ADVANCED PLACEMENT PHYSICS C TABLE OF INFORMATION

CONSTANTS AND CO	NVERSION FACTORS		
Proton mass, $m_p = 1.67 \ge 10^{-27} \text{ kg}$	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$		
Neutron mass, $m_n = 1.67 \ge 10^{-27} \text{ kg}$	1 electron volt, 1 eV = 1.60×10^{-19} J		
Electron mass, $m_e = 9.11 \ge 10^{-31} \text{ kg}$	Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$		
Avogadro's number, $N_0 = 6.02 \ x \ 10^{23} \text{mol}^{-1}$	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$		
Universal gas content, $R = 8.31 \text{ J/(mol} \cdot \text{K})$			
Boltzmann's constant, $k_B = 1.38 \times 10^{-23}$ J/K	Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$		
1 unified atomic mass unit, $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$			
Planck's constant, $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$ $hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$			
Vacuum permittivity, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$			
Coulomb's law constant, $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{N} \cdot \text{m}^2/\text{C}^2$			
Vacuum permeability, $\mu_0 = 4\pi \times 10^{-7} (T \cdot m)/A$			
Magnetic constant, $k' = \frac{\mu_0}{4\pi} = 1 \times 10^{-7} (T \cdot m)/A$			
1 atmosphere pressure, 1 atm = $1.0 \times 10^5 \frac{\text{N}}{\text{m}^2}$ =	$1.0 \times 10^{5} \text{ Pa}$		

	meter, m	mole, mol	watt, W	farad, F
	kilogram, kg	hertz, Hz	coulomb, C	tesla, T
UNIT SYMBOLS	second, s	newton, N	volt, V	degree Celsius, °C
	ampere, A	pascal, Pa	ohm, Ω	electron volt, eV
	kelvin, K	joule,	henry, H	

PREFIXES			
Factor	Prefix	Symbol	
109	giga	G	
106	mega	М	
10 ³	kilo	k	
10-2	centi	С	
10-3	milli	m	
10-6	micro	μ	
10-9	nano	n	
10-12	pico	р	

VA	LUES O		-	TRIC FU	-	ONS FOR	
θ	0°	30°	37°	45°	53°	60°	90°
sin <i>θ</i>	0	1/2	3/5	$\sqrt{2/2}$	4/5	$\sqrt{3/2}$	1
cosθ	1	$\sqrt{3/2}$	4/5	$\sqrt{2/2}$	3/5	1/2	0
tanθ	0	$\sqrt{3/3}$	3⁄4	1	4/3	$\sqrt{3}$	8

	MECHANICS	
Equation	Usage	
$v_x = v_{x0} + a_x t$	Kinematic relationships for an object accelerating uniformly in one	
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	dimension. Can be applied in both <i>x</i> and <i>y</i> directions.	<i>a</i> = acceleration
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$		E = energy F = force
$\overrightarrow{a} = \frac{\Sigma \overrightarrow{F}}{m} = \frac{\overrightarrow{F}_{net}}{m}$	Newton's second law. Newton's second law for rotation.	f = frequency h = height I = rotational inertia
$\vec{a} = \frac{\Sigma \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$		J = impulse K =kinetic energy k = spring constant
$ec{F} = rac{dec{p}}{dt}$	The total momentum of the system is the vector sum of the momenta of the individual objects. The rate of change of momentum is equal to the net external	ℓ = length L = angular momentum m = mass P =power
	force.	<i>p</i> = momentum
$\vec{J} = \int \vec{F} dt = \Delta \vec{p}$	Impulse is defined as the average force acting over a time interval. Impulse is also equivalent to the change in momentum of the object	r = radius or distance T = period t = time U = potential energy
	receiving the impulse.	<i>V</i> = volume
$\vec{p} = m\vec{v}$	Defines momentum for a single object moving with some velocity.	<pre>v = velocity or speed W = work done on a system </pre>
$\left \vec{F}_{f}\right \leq \mu \left \vec{F}_{n}\right $	The relationship for the frictional force acting on an object on a rough surface.	x = position $\mu = \text{coefficient of friction}$ $\theta = \text{angle}$
$\Delta E = W = \int \vec{F} \cdot d\vec{r}$ $K = \frac{1}{2}mv^{2}$	Calculate the work done on an object by a force	$\tau = \text{torque}$ $\omega = \text{angular speed}$
$K = \frac{1}{2}mv^2$	The definition of kinetic energy.	α = angular acceleration
$P = \frac{dE}{dt}$ $P = \vec{F} \cdot \vec{v}$	Defines power.	$\phi =$ phase angle
$P = \vec{F} \bullet \vec{v}$	Defines power.	
$\Delta U_g = mg\Delta h$	The definition of the gravitational	
	potential energy of a system consisting of the Earth and on object of mass <i>m</i>	
2	near the surface of the Earth.	
$a_c = \frac{v^2}{r} = \omega^2 r$	Centripetal acceleration Angular velocity	
$\vec{\tau} = \vec{r} \times \vec{F}$	The definition of torque.	
$a_{c} = \frac{v^{2}}{r} = \omega^{2}r$ $\vec{\tau} = \vec{r} \times \vec{F}$ $I = \int r^{2}dm = \Sigma mr^{2}$	The general definition of moment of inertia. The calculus definition of moment of	

ADVANCED PLACEMENT PHYSICS C EQUATIONS

[l	[
	inertia.	
$x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$	Calculate the center of mass for a	
$x_{cm} \equiv \overline{\sum m_i}$	nonuniform solid that can be	
	considered as a collection of regular	
	masses or for a system of masses.	
$v = r\omega$	The angular motion is related to the	
	linear translational motion for objects	
	that are rolling without slipping on a	
	surface.	
$\vec{L} = \vec{r} \times \vec{p} = I \vec{\omega}$	The definition of angular momentum of	
	a rotating rigid body.	
1	Kinetic energy in a rotating object.	
$K = \frac{1}{2}I\omega^2$		
$K = \frac{1}{2}I\omega^2$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	The angular kinematic relationships for	
$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	objects experiencing a uniform angular	
$\omega = \omega_0 + \alpha t$	acceleration.	
	Spring potential energy.	
$\vec{F_s} = -k\Delta \vec{x}$ $U_s = \frac{1}{2}k(\Delta x)^2$		
	Show the potential energy for an ideal	
1	spring using the general relationship	
$U_s = \frac{1}{2}k(\Delta x)^2$	between conservative force and	
2	potential energy.	
$x = x_{max} \cos\left(\omega t + \phi\right)$	The general relationship for simple	
π $\pi_{max} \cos(\omega r + \varphi)$	harmonic motion (SHM).	
2π 1	The period of simple harmonic motion	
$T = \frac{2\pi}{\omega} = \frac{1}{f}$	(SHM) is related to the angular	
w j	frequency.	
[m]	The period of a system oscillating in	
$T_s = 2\pi \sqrt{\frac{\overline{m}}{k}}$	simple harmonic motion (SHM), or its	
νκ	equivalent for a pendulum or physical	
r	pendulum, and this can be shown to be	
$T_p = 2\pi \sqrt{\frac{l}{g}}$	true experimentally from a plot of the	
$I_p = 2\pi \frac{1}{g}$	appropriate data.	
N C		
$\vec{m}_1 \vec{m}_2$	The magnitude of the gravitational	
$\left \vec{F}_{g}\right = G \frac{m_1 m_2}{r^2}$	force between two masses can be	
-	determined by using Newton's	
	universal law of gravitation.	
Gm_1m_2	The gravitational potential energy of the	ohiect-Earth system (shown
$U_g = -\frac{Gm_1m_2}{r}$	using the relationship between the conse	
Γ		i valive force and potential
	energy.	

I	ELECTRICITY AND MAGNETISM	M
	Usage	
$\frac{\text{Equation}}{\left \vec{F}_{E}\right = \frac{1}{4\pi\varepsilon_{0}} \left \frac{q_{1}q_{2}}{r^{2}}\right }$	Coulomb's Law; gives the magnitude of electrostatic force between two point charges.	A = area B = magnetic field C = capacitance
$\vec{E} = \frac{\vec{F}_E}{q}$ $\oint E \bullet dA = \frac{Q}{\varepsilon_0}$	The definition of electric field.	<i>d</i> = distance <i>E</i> = electric field
$\oint E \cdot dA = \frac{Q}{\varepsilon_0}$ $\varepsilon = \oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_B}{dt}$	Gauss's Law. Can help in describing features of electric fields of charged systems at the surface, inside the surface, or at some distance away from the surface of charged objects. Can be useful in determining	$\mathcal{E} = \text{emf}$ $F = \text{force}$ $I = \text{current}$ $J = \text{current density}$ $L = \text{inductance}$ $\ell = \text{length}$ $n = \text{number of loops of wire per}$ unit length
<u> </u>	the charge distribution that created an electric field.	N = number of charge carriers per unit volume P = power
$\Delta V = -\int \vec{E} \cdot d\vec{r}$ dV	The general definition of potential difference that can be used in most cases.	Q = charge q = point charge R = resistance
$E_x = -\frac{1}{dx}$	The differential form.	r = radius or distance t = time
$E_x = -\frac{dV}{dx}$ $V = \frac{1}{4\mu\varepsilon_0} \sum_i \frac{q_i}{r_i}$	Can be used to determine the potential due to multiple point charges by the principle of superposition in scalar terms of the charge.	$U = \text{potential or stored energy}$ $V = \text{electric potential}$ $v = \text{velocity or speed}$ $\rho = \text{resistivity}$ $\Phi = \text{flux}$
$U_E = qV = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$	The electrostatic potential energy of two point charges near each other.	
$\Delta V = \frac{Q}{C}$	Calculates the energy stored in a capacitor.	
$C = \frac{\kappa \varepsilon_0 A}{d}$	Calculates the capacitance of a parallel-plate capacitor with a dielectric material inserted between the plates.	
$C_p = \sum_i C_i$	Can be used to determine the equivalent capacitance of capacitors arranged in parallel.	
$\frac{1}{C_S} = \sum_i \frac{1}{C_i}$	Can be used to determine the equivalent capacitance of capacitors arranged in series. The definition of current.	
$I = \frac{dQ}{dt}$ $U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$	The energy stored in a capacitor.	

ADVANCED PLACEMENT PHYSICS C EQUATIONS

	The electrical potential energy		
0	stored in a capacitor.		
$R = \frac{\rho \ell}{A}$	The definition of resistance in		
A = A	terms of the properties of the		
	conductor.		
$\vec{E} = \rho \vec{J}$	The relationship that defines		
	current density (current per		
	cross-sectional area) in a		
	conductor.		
$I = Nev_d A$	The definition of current in a		
	conductor.		
ΔV	Ohm's Law		
$I = \frac{1}{R}$			
$I = \frac{\Delta V}{R}$ $R_S = \sum_{i}^{L} R_i$	The rule for equivalent resistance for resistors arranged in series.		
$\frac{1}{R_p} = \sum_{i=1}^{l} \frac{1}{R_i}$	The rule for equivalent resistance for resistors arranged in		
$\frac{-}{D} = \sum_{n=1}^{\infty} \frac{-}{D}$	parallel.		
. ,	-		
$\frac{P = I\Delta V}{\vec{F}_{M} = q\vec{v} \times \vec{B}}$	The definition of power or the rate of heat loss through a resistor.		
$\vec{F}_M = q \vec{v} \times \vec{B}$	The magnetic force of interaction		
	particle and a uniform magnetic field.		
$\oint \vec{B} \bullet d\vec{\ell} = \mu_0 I$	Ampère's Law (a fundamental law of magnetism that relates the		
$\int D^{-1} u t = \mu_0 T$	magnitude of the magnetic field t	to the current enclosed by a	
	closed imaginary path called an Amperian loop) in integral form.		
$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{\ell} \times \hat{r}}{r^2}$	The Biot-Savart Law (the fundamental law of magnetism that		
$dB = \frac{1}{4\pi} \frac{1}{r^2}$	defines the magnitude and direct	tion of a magnetic field due to	
in T	moving charges or current-carry	ing conductors in differential	
	form		
$\vec{F} = \int I d\vec{\ell} \times \vec{B}$	The definition of the magnetic force acting on a straight-line		
$F = \int I dt \times B$	segment of a current-carrying co	nductor in a uniform magnetic	
	field.		
$B_S = \mu_0 n I$	Can be used to determine the magnetic field inside a solenoid.		
$\Phi_B = \int \vec{B} \cdot d\vec{A}$	The definition of magnetic flux.		
$B_{S} = \mu_{0}nI$ $\Phi_{B} = \int \vec{B} \cdot d\vec{A}$ $\varepsilon = -L\frac{dI}{dt}$ $U_{L} = \frac{1}{2}LI^{2}$	Faraday's Law.		
1	The stored energy in an inductor.		
$U_L = \frac{1}{2}LI^2$			

	GEOMETRY AND TRIGON	OMETRY
Equation	Usage	
A = bh	Rectangle	A = area
$A = \frac{1}{2}bh$	Triangle	<i>C</i> = circumference
$A = \pi r^{2}$ $C = 2\pi r$ $s = r\theta$	Circle	V = volume S = surface area b = base h = height
$V = \ell w h$	Rectangular Solid	$\ell = \text{length}$
$V = \pi r^2 \ell$ $S = 2\pi r \ell + 2\pi r^2$	Cylinder	w = width r = radius
$V = \frac{4}{3}\pi r^3$ $S = 4\pi r^2$	Sphere	$s = \operatorname{arc} \operatorname{length}$ $\theta = \operatorname{angle}$
$a^{2} + b^{2} = c^{2}$ $\sin\theta = \frac{a}{c}$ $\cos\theta = \frac{b}{c}$	Right Triangle	$ \begin{array}{c} s \\ \hline \theta \\ \hline \theta \\ \hline \theta \end{array} $
$\tan\theta = \frac{a}{b}$		

CALCULUS
$\frac{df}{dt} = \frac{df}{du}$
$\frac{1}{dx} = \frac{1}{du} \frac{1}{dx}$
$\frac{d}{dx}(x^n) = nx^{n-1}$
$\frac{d}{dx}(x^{n}) = nx^{n-1}$ $\frac{d}{dx}(e^{ax}) = ae^{ax}$
$\frac{a}{-1}(\ln ax) = \frac{1}{-1}$
$\frac{dx}{dx} \frac{dx}{dx} dx$
$\frac{dx}{dx}[\cos(dx)] = -d\sin(dx)$ $\int x^n dx = \frac{1}{n+1}x^{n+1}, n \neq -1$ $\int e^{ax} dx = \frac{1}{a}e^{ax}$
$\int e^{ax} dx = \frac{1}{a} e^{ax}$
$\int \frac{dx}{x+a} = 1n x+a $
$\int \cos(ax)dx = \frac{1}{a}\sin(ax)$
$\int \sin(ax)dx = -\frac{1}{a}\cos(ax)$
VECTOR PRODUCTS
$\vec{A} \cdot \vec{B} = AB\cos\theta$
$ \vec{A} \times \vec{B} = AB\sin\theta$

The following assumptions are used in this exam.

- I. The frame of reference of any problem is inertial unless otherwise stated.
- II. The direction of current is the direction in which positive charges would drift.
- III. The electric potential is zero at an infinite distance from an isolated point charge.
- IV. All batteries and meters are ideal unless otherwise stated.
- V. Edge effects for the electric field of a parallel plate capacitor are negligible unless otherwise stated.