() rockcontent

Let's Learn
Themes

What are they, how to build them, and how to test/proof them

What you'll

learn

Overview
o Power of Themes
o Programs & Tools
The Process
The Themekit
o What's included

o Structure & what to update
o Adding elements
Mapping to Quick Starts
o “Required” CSS classes
o How classes link to colors
Dive into LESS
o Structure walkthrough
o Structure of a micro-theme
o Coding
Testing & Proofing
o Themekit testing

o Browser testing
o Quick Start testing

Overview

(® rockcontent

The Power of
Themes

If you are unfamiliar with what a theme
is, start by taking a look at our Power
of Themes video. We would also
recommend reviewing our Developer's
Guide PDF to familiarize yourself with
our terminology and micro-themes.

CONNECTING WITH YOUR
CUSTOMERS
Sub-headline about the infographic here. Give your user an :‘E
idea of the facts they will be learning while on this page.
SHARE THIS f 4 g
EXPERIENCE
FACEBOOK
et
>

MacBook

https://vimeo.com/225446165
https://vimeo.com/225446165
https://support.ioninteractive.com/hc/en-us/articles/200957019-Frameworks-Micro-Themes-Develop-Your-Own
https://support.ioninteractive.com/hc/en-us/articles/200957019-Frameworks-Micro-Themes-Develop-Your-Own
https://vimeo.com/225446165

) rockcontent

Programs & Tools Files
e Programs & Tools e Your logo files (SVG or
e Aninternet browser PNG)
P rO g ra m S e Anlon console e Your fonts (web font
! e A code editor like Visual files, or an embed link)
TOO | S Studio Code e Your brand guidelines
e A LESS compiler like Codekit

Note: You'll want to make sure that
you have “Enable Javascript in
LESS files” checked in whatever
compiler you are using. Otherwise,
you may run into an error and your
files may not compile.

& Files

The Process

STEP #1

Copy the Master Theme files
into a new folder for your brand.

This is a good practice to help keep the themes
organized, especially if you'll be building multiple
themes.

SN NN

o
L]

\\\\\\\\\\\\\\\D\\\\\\

accordion.less
backgrounds.less
buttons.less
colors.less
config.codekit
config.codekit3
css

custom.less
directional-buttons.less
flow.less
form-brand.less
generic.less
genericbutton.less
images
images.less
ixp.less

links.less
lists.less
logo.less
mixins.less
nav.less
pods.less
regions.less
settings.less
styling.less
tabs.less
theme.less
themeForm.less
typography.less
webfonts.txt

STEP #2]

Collect the logo(s) and font(s)
if applicable.

Logo files:
e Logo files should be saved as .svg (preferred) or .png.

—> arrow.png

Font ﬁ|eSZ B Brand Guidelines.pptx

e Font files should be uploaded in as many formats as e

possible for cross browser support. 9 Logos

I Theme

V.V W

The font files that we support are:
.eot (IE 6-9)

1tf (Safari, Android, i0S)

.woff (pretty modern browsers)
.woff2 (really modern browsers)
.svg (i0S legacy)

It's a good practice to put the logo(s) and font file(s)
into the same overall brand folder.

8

STEP #3

Log into the lon console,

and navigate to the Frameworks

section.

You'll want to select the ion Framework 4.0
Open the dropdown “Themes”.

® Dashboard

8 Portfolios

I\ Libraries A

LIBRARIES
ion Framework 4
February 2014

sxpand/coligose olf
¥ ion_Framework v4.0 * Seresties
ion_Framework_v4.0.jpg
ion_Framework_v4.0.xmi
¥ Masters
¥ Themes
¥ Quick Starts * «
¥ Quick Starts 2 * 4ptaces

Images
Fulfillment
Forms

Snippets

Scripts

Server scriptlets
Widgets

Email templates
Frameworks

Components

Last Edaed

Oct 2, 2020 3:58 PM

Oct 1, 2020 3:57 PM
Oct 1, 2020 3:57 PM

Oct 2, 2020 3:58 PM

Oct 2, 2020 3:58 PM

Oct 2, 2020 3:58 PM

Oct 2, 2020 3:58 PM

STEP #4

Copy the Quick Starts 2 theme
and name the new theme.

You'll want to name the new theme after the brand. Themes can not
have the same name. We recommended naming your theme after
the brand followed by the current year. This will help avoid any
confusion if a brand updates their guidelines in the future and
requires a new theme.

g Example: Brand_Name_2020

8

» Quigk_Starts_2 = U<cc in 4
—+llll! _SOOPY

Quick_Starts. 2

Create a new Theme by copying “Quick_Starts_2"

Theme Name:

Cancel

KA ramemri vt 0 » Themes

10

STEP #5

Upload the logo(s) and font(s),

and/or update the webfonts.txt file.

The font files that we support are:
e eot (IE 6-9)

tf (Safari, Android, i0S)

woff (pretty modern browsers)
woff2 (really modern browsers)
.svg (i0S legacy)

We recommend uploading as many file types as
possible for the best cross browser compatibility, but
any or all of the file types can be included.

¥ TestingMasterTheme = scd in 1 place

brand_sprite-choice.png

TestingMastesTheme

Add or replace files in fion,

Berowse to 9dd of replace files in this framework.

Jon Framework v4 0> Themes

11

STEP #5]

e Adding fonts through the webfonts.txt
This method assumes that you don't have font
files and are instead using a third party to host
the fonts for you. Each third party should
provide details for installing the font, but most
will use a link reference or the @import rule.

Support post

e Adding fonts to the framework
If you have font files that are not
being hosted by a third party, you
will want to upload them directly to
the framework and reference the
files within your theme.

Support post

12

https://support.ioninteractive.com/hc/en-us/articles/115005504223-Add-a-New-Font-Third-Party-
https://support.ioninteractive.com/hc/en-us/articles/115005504203

STEP #6

Create a new portfolio and
campaign for themes,

if there is not already one in your
console.

When working on themes, we create a Themekit preview page to
view theme as we create it and pull down Quick Start pages to test
the theme.

All Themekit preview pages and test Quick Starts belong in the lon
Creative Development (portfolio) > Theming (campaign).

You will want to create this portfolio and/or campaign if it doesn't
already exist in the console you're working in.

8

.
Add campaign

Start by entering a unique name for this campaign. The “Fallback Url" is the web location you w
ant to send people if for some reason ive are not avai (e.g.an | web page that

best suits this campaign). You can use the "Description” field to briefly describe the mission of
this campaign.

Portfolio

ion Creative Development +

Name

Theming

Must be unique

STEP #7]

Pull the Themekit page down
from the Quick Start Cloud into
the Theming campaign.

The Themekit page can be found in Quick Start Cloud > Other >
Themekit.

14

STEP #8]

Navigate to the Themekit
page that you just created,
and change the theme to
the new brand theme.

Actions v Edit properties

Theme

Quick Starts 2 v

ion Brand

. NewTheme_Test
Quick Starts
Quick Starts 2
Rock Content

v Rock Content 2020 ‘

Rock_Content_Test

15

STEP #9]

Now you're ready to code
the theme.

This is covered in depth within our “Dive Into Less”
section.

Jump to Dive Into Less

sTEP#10

Master Theme ~ Clear Log

2 florm-brand.less Master Thame
203 ftorm-brand.less Master Theme 2:05:28
¢ fform-brand.less Master Themeo

0% fform-brand.less

fform-brand.less

7 themeForm.less Master Thome 2:08:C
08 fform-brand.less Master Themo 2:08:0

3 ftheme.less

Compile the theme.css,
form-brand.css, and
themeForm.css files.

10 fform-brand.less
fform-brand.less Mastor Them

2 fthemeForm less

3 florm-brand.less
4 theme.less Maste

© © © 0 0o 0 © © © 0 0 © © o

15 fform-brand.less hemo 2:16:52

MthemeForm.less Master Theme 2016

7 theme.less Mastor Thome 218
s Morm-brand.less Master Thome

/themeForm.less

0 Morm-brand.less
221 ftheme.less Master Theme 2:18:24

2 fthemeForm.less

© ¢ ¢ o 0 0 o

+ fform-brand.less

STEP#11

TestogMasterThame.

2464 o ropiace fdes in flon Feameweck v4 0Theme (B Documenss
3 Crostive Gl Fles

Upload the theme.css,
themeForm.css, and form-brand.css
flles to the framework.

Brown 20 630 o resiace fies 1 D framewark
ocrm

T

03 Ut &
© Remote 032

@ ratwore

T

You can do this in mU|t|p|e ways. preview.postclickmarketing.com says =
. The file "themeForm.css" already exists in the folder
1. Locate the folder that holds your compiled CSS on your computer, FrostifigidastedThemat. and will he replaced whenyousave:
Open the Frameworks > Themes page in your browser, and hover over
. « . » A t to ch this file?
your new theme. Click the “+Files” button, and upload the three R R O T
compiled CSS files into the framework. You will see a warning for the cancel “
files being overwritten, and you'll want to hit Yes to the warnings. e T

Add or replace files in /ion_Framework_v4.0/Themes/TestingMasterTheme/

2. Copy the code within the CSS file(s) from your code editor. Open the
Frameworks > Themes page in your browser, and select the applicable
.css file. Paste the code into the file, and click “Save & Close”.

Cancel Save & close

STEP #12]

Navigate to the Themekit page
that you created and make any/all
updates needed to test and show
your theme.

This is covered in our “The Themekit” section.

Jump to The Themekit

Theme Name Here

Your theme includes brand-a w«mm ying thy coo 10ls the look and feet of w« ‘croothe. Toko 2 100k at our
fy undiorstand

¥

£Oviow yOur heme, Lk 3 pook at the tooltips (

19

STEP#13

Add a URL to the Themekit page.

Once the Themekit has a URL, you'll want to check the page in various
browsers to make sure that your elements are working properly.

Engaged v Proof Preview
URL
preview, i ketingcom v/ th h
Domain Path

MUt be Unigue Within preview POStEbekmarket:ng com

URL tracking
Offline v Testing v
Category Sub-category Or, add new sub-category

Used to categorize your visitor tratfic fot teporting and analysis.

Choose a creative

Optionally choose a creative for this URL. Note that you can do this later as well.
view as list

STEP#14]

Pull down three Quick Starts and
apply the new theme to them for
testing.

You may want to test Quick Starts while you're coding your theme,
so this step in the process may be flexible, depending on your
preference.

This is covered in our “Testing & Proofing” section.

Jump to Testing & Proofing

8

2]

STEP#15

Quality Assurance.

Internally, we have a QA manager who reviews all of our themes;
even if you don't have a QA manager specifically, it's a good idea
to have someone else double-check your new theme.

STEP #16]

Celebrate your success,
you've finished a new theme!

The Themekit

« What's included
« Structure & what to update
« Adding elements

What's Included?

The Themekit page (found in the Quick Start Cloud > Other category)
showcases everything that is included in our standard code by default.

One (1) logo

Two (2) font styles (one font family)

Text styles for headlines/body copy

Nine (9) color swatches, not including White and Black

Five (5) link styles

Two (2) unordered list styles

One (1) rounded corner, two (2) drop shadow, two (2) border styling

Six (6) button colors

Four (4) button sizes

Four (4) button icons

Two (2) directional button styles

Two (2) accordion styles

Two (2) tab styles

One (1) numbered navigation, two (2) dot navigation, and two (2) progress bar
navigation styles for Flow

One (1) form styling

One (1) pre-header, two (2) header, one (1) pre-content, three (3) content, one (1)
post-content, one (1) footer, and one (1) post-footer region

e Two (2) navigation styles

Theme Name Here

s the kook and feel of your
creotue, Take 3 ki at powes 5. Then 35

YOU review your theme, take 2 ()

FOur thame JMfects that eleenent.

Tremes are fexstle and an be adusted nd/cr Uped to BTE Mmeet your needs. f
JOU e a7y QueSHONS, Pleate reach OUL 15 YOUr 3CCOUNt MAnager for he.

https://quickstartcloud.postclickmarketing.com/theme/2019-themekit

[t]]conmaner@; X = W

Color E Pod
Pellentesque eu purus

The structure e B

et metus elementum,
tempus justo a, gravida
purus.

When you select an element, like a pod, you'll see that the “Custom” Link Style
dropdown menu in the styles panel has a purple droplet on it, which
means that something has been applied. The element also has a blue

micro-theme tag.

Groenery Pod

Micro-themes are linked to CSS classes within your theme. Any time a
micro-theme is applied, you will see this purple droplet appear beside
the Custom dropdown. Color H Pod

Pellentesque eu purus

non orci pellentesque
egestas in vel mi. Quisque
et metus elementum,

The structure

Every micro-theme in your theme will be attached to at least one CSS
class; these CSS classes are the same across all of our templates and
any other themes and experiences that you may have.

It's very important to note this, as this is what will make a difference in
the amount of editing that will need to be done to Quick Starts when
your new theme is applied.

button button-a button-medium

What to update

The first item to update is the name of the theme at the top of the
page, and the Brand Guidelines link.

You'll want to make sure to link to the client's brand guidelines or to
their website (if they don't have brand guidelines).

Theme Name Here

Vour therme inchudes beand spproned sybeg DK<
vises

N

o

What to update

As you work on the Themekit, you'll want to update all labels on all
elements to match your micro-theme labels. s
For example, in the Font Styles section, you'll see “Font A" and “Font B
in the text box. You'll want to change these labels in the Rich Text
Editor to match the micro-theme label, so that when you or your client
looks at the Themekit, they will know what fonts they have available.

B I U kK ® & M| S - fumn
% x QB L -

Adding elements

Let's say your brand has three logos — a color version, a black version,
and a white version. The Themekit page only has one logo on it, so
after adding the logos into your theme code, you'll want to also add
those additional logos to the Themekit page and preview them.

You'll want to select our first logo container, and you'll copy that into
the next column. Once you have the container copied, you'll update
the micro-theme to the second logo that you added. It's a good
practice to utilize the micro-theme dropdowns when adding these to
the Themekit page, rather than typing the class directly into the
Custom CSS Classes panel, to make sure that the micro-theme is
hooked up correctly.

Black
Transparent Transparent

Color D Color H

ColorG

Adding elements

You'll be able to copy other elements in the same way — if your brand
has more background colors than the nine that come in the theme by
default, for example, you'll select one of the background color
columns, and copy and paste it into the row. Then, you'll change the
Background micro-theme to your new color, and update the label
inside to match your micro-theme name.

White Black lack Color A
Transparent Transparent

Color H

Color G

31

Mapping to Quick Starts

“Required” classes

All of the micro-themes in a theme are linked to at least one CSS class.
This is what allows us to change themes on experiences and only need
to make minor design adjustments.

Our Quick Starts utilize these required classes. This allows the Quick
Start to be pulled down and have the elements rebranded almost
seamlessly when switching from theme to theme.

The required classes in a theme are all delineated in comments in the
LESS files. These classes are required because the Quick Starts utilize
them; if your theme does not contain these classes, the Quick Starts will
be badly styled and will require quite a bit of editing before being usable.

These required classes should rarely ever be adjusted
and should never be removed from a theme.

To get a better grasp of how to properly map your theme(s) to the Quick
Start theme, let's take a look at a Quick Start and the associated
classes.

Looking at the Branded Infographic Quick Start, you'll see that each

QUiCk Starts & CO|OI’S section has a colored background.

When we click on the Pre-Content container, it has the “Greenery
Open Branded Infographic

Background” micro-theme applied, which we can see is the
.background-e class.

STATISTICS LEADERSHIP ABOUT US FINANCIALS CONTACT
Greenery Background

STATISTICS

8K 170K

EMPLOYEES CUSTOMERS

background-e

34

https://quickstartcloud.postclickmarketing.com/preview/branded-infographic

Quick Starts & Colors

Open Branded Infographic

In our LESS files, you'll see that the .background-e class, found in the
backgrounds.less file, utilizes the @color-a LESS variable. Going into the
settings.less file, you'll see all the color swatches set up at the top of the file.

@color-a will be the primary color, and will map to that “Greenery” color in our
Quick Starts. This means that any color that you set to @color-a will have that
color applied anywhere you see “Greenery” in the Quick Starts.

Our settings.less file has comments for what each color variable will map to
in the Quick Starts, and it is a best practice to try and keep the contrast values
of these colors similar, so that the Quick Starts pull down with as little editing
needed as possible.

TIP: @color-a should always be the primary color of the brand,
because “Greenery” gets used consistently in our Quick Starts,
and should be a color dark enough that white text and imagery
would look good on.

d: @color-a;

an

https://quickstartcloud.postclickmarketing.com/preview/branded-infographic

“Required” classes

What to do if the brand doesn’t have as many options as the
default theme?

For example, our theme requires nine colors. If your brand only
has six colors, you'll want to duplicate those colors into the color
variables, rather than removing the three additional ones.

This will be the same for any other required elements; if your
brand only has one navigation style, you will want to duplicate that
style into the alternate style, rather than removing it entirely.

Dive into LESS

« Structure walkthrough
« Structure of a micro-theme
« Coding

Structure Walkthrough

Let's take a look at the Master Themekit folder.

Within the Master Theme folder, you'll see 25 LESS files, a
webfonts.txt file, a CSS folder with 3 compiled CSS files inside,
and an images folder with some sprite images inside.

You'll also see a codekit configuration file. We use Codekit to
compile our LESS files, so if you use a different compiler you may
end up having a different config file.

Open Master Themekit

8

https://support.ioninteractive.com/hc/en-us/articles/200957019-Frameworks-Micro-Themes-Develop-Your-Own

Structure Walkthrough

The LESS files are broken down into segments that follow the
overall structure of our Themekit page and our settings.less file.

The most important files to note are:

Theme.less
themeForm.less
Form-brand.less
Settings.less

The theme, themeForm, and form-brand files will be the three files
that will compile into CSS files. Looking inside the CSS folder,
yoUu'll see the three .css files coincide with those three LESS files.

SN

4
o

™

\\\\\\\\\\\\\\\[}\\\\\\

accordion.less
backgrounds.less
buttons.less
colors.less
config.codekit
config.codekit3
css

custom.less
directional-buttons.less
flow.less
form-brand.less
generic.less
genericbutton.less

1 images

images.less
ixp.less
links.less
lists.less
logo.less
mixins.less
nav.less
pods.less
regions.less
settings.less
styling.less
tabs.less
theme.less
themeForm.less
typography.less
webfonts.txt

w
O

Compiled Files

theme.less

This file is importing the majority of our other LESS files,
which will then be compiled into CSS.

theme.css

The theme.css file will be uploaded to the platform
framework.

themeForm.less and form-brand.less

These files are used by our platform to style our forms.
themeForm.css and form-brand.css

The themeForm.css and form-brand.css files will be
uploaded to the platform framework.

accordion.less

backgrounds.less
buttons less

NHKHNIIN

colors.less

B config.codekit
config.codekit3

1 css 4
custom.less
directional-buttons.less
flow.less
form-brand.less
generic.less
genericbutton.less
images >
images.less

ixp.less

links.less

lists.less

logo.less

mixins.less

nav.less

pods.less

regions.less
settings.less
styling.less

tabs.less

theme.less
themeForm.less
typography.less
webfonts.txt

NRIRRRR

VN NREENRENENNSENENEK

40

Structure Walkthrough

Accordion.less: This file controls the styling of the accordions
Backgrounds.less: This file controls the styling of all the background
colors

Buttons.less: This file controls the styling of all the buttons
Colors.less: This file controls the styling of all the text colors
Custom.less: This is an empty file that can contain any miscellaneous
styling that might not fit anywhere else

Directional-buttons.less: This file controls the styling of the directional
button arrows

Flow.less: This file controls the styling of the flow navigation dots,
numbers, and progress bar

Form-brand.less: This file controls the styling of the Freestyle Forms
Generic.less: This file controls a bit of styling on the overall page, the
HTML and body styling

Genericbutton.less: This file controls the styling of the “Generic” button
classes

Images.less: This file controls the styling for image alignment

Ixp.less: This file is specific to lon and the micro-themes. For reference,
please see the Developers Guide PDF. This is where all of the references
for the micro-theme names and categories are set.

Links.less: This file controls the styling for all the links

Lists.less: This file controls the styling for the ordered and
unordered lists

Logo.less: This file controls the styling for the logo(s)
Mixins.less: This file holds the common LESS mixins that our
themes utilize

Nav.less: This file controls the styling for the navigation
Pods.less: This file controls the styling of all the pods
Regions.less: This file controls the styling of all the regions
Settings.less: This is the overall settings file, and this is where 95%
of your editing will be done. We'll jump into this file in the next
video.

Styling.less: This file controls the miscellaneous “Styling” category,
which contains things like borders and rounded corners by default
Tabs.less: This file controls the styling of the tabs

Theme.less: This file is the compilation of all the other LESS files
themeForm.less: This file controls an old-school styling of forms
Typography.less: This file controls the styling of the typography
overall, including the fonts and font styles, the headlines and
paragraphs, any additional styles like captions, etc.

Webfonts.txt: This file will hold your embed link if you're using a
third party service to host your fonts, like Google.

Structure Walkthrough

Micro-theme properties include:
» -ixp-name: "Name";

» -ixp-tags: "tagname’;

» -ixp-group: "groupname”,

» -ixp-scope: "scope”;

To create a new micro-theme in CSS, you would
add these lines to your overall CSS class.

Example:

.example-style {
-ixp-name: ‘Name”,
-ixp-tags: “tagname”;
-ixp-group: "group”;
-ixp-scope: "scope’;

}

-ixp-name: "Name”;: The name of the Micro-theme (i.e. ixp-name: “Green Pod”;). The value

from this property will appear in the 2nd drop-down of the Micro-theme section in
creative studio.

-ixp-tags: “tagname”;: The value from this property will appear in the Micro-theme
category drop-down in creative studio when an element is selected and you're viewing the
Edit tab.

-ixp-group: "group";: The value from this property will determine whether or not selecting
multiple Micro-themes from the same Micro-theme category will have one Micro-theme
override another or apply all Micro-themes selected.

-ixp-scope: "scope";; A comma-separated list of scopes. Micro-themes will only appear in
the dropdown when specific elements within the scope are selected. By narrowing a
Micro-theme's scope, you control which elements can be styled.

Open Developer’s Guide PDF

42

https://support.ioninteractive.com/hc/en-us/articles/200957019-Frameworks-Micro-Themes-Develop-Your-Own

Structure of a micro-theme: LESS

The ixp.less file contains LESS mixins for all of the standard scopes /
categories of micro-themes that are typically included in a theme.

To create a micro-theme in the LESS files, simply call the appropriate
mixin (example: .ixp-colors()) and pass in the name parameter (this
name will be what is shown in the Micro-theme tag).

Example: ixp-colors(“@{color-a-name}");

.color-a
.color-b

.color-c
.color-d
.color-e
.color-f

.color-j
.color-k

.color-g
.color-h
.color-i

.ixp-color
.ixp-color

.ixp-color

.ixp-colors("
.ixp-colors("

@{color-white-name}"); }
@{color-black-name}"); }

"@{color-a-name

~colors("

.ixp-color

'‘@{color-c-na
‘@{color-d-na

‘@{color-i-name}");

"@{color-e-name}");

.ixp-colors("

na

@{color-g-name}");

Adding new micro-theme categories

It's a best practice to utilize the standard / default categories as much as
possible, but sometimes new categories will need to be added.

Example: Breaking down background colors into:
e Primary
e Secondary

To do this, you'll add a new micro-theme “Name” and “Tag".

Example:

-ixp-name: “Backgrounds - Secondary”;

-ixp-tags: “Backgrounds - Secondary”;

-ixp-group: "background”,

-iXp-scope:
"ContainerLike,StyleOnly,CustomForm,ChoiceGroup,Flow,Flow
Step,FullPageSection,FullPageSubsection’;

In this example, the group would be the same for Backgrounds - Primary and
Backgrounds - Secondary, because you would want the user to only be able
to apply one of these micro-themes at a time.

8

ST E P # 1 accordion.less

backgrounds.less

buttons.less
colors.less
config.codekit
config.codekit3
css >
custom.less

directional-buttons.less

flow.less

form-brand.less

generic.less

genericbutton.less

images >
images.less

ixp.less ece o Fo
links.less
lists.less

logo.less ® Project Settings
i DT conandname:
mixins.less = it ity conandtame Master Theme

Buid Process
nav.less g e
pods.less @ Langusges

Add the folder to your compiler
and code editor & add files to your
framework.

We'll start by making a copy of the Master Theme folder, and naming
it with our new theme name. Once we have that copy created, we'll
add the theme folder to our compiler — for example, Codekit — and
we'll rename it to match the name of our theme.

NSNMNNNNEBRRNRRD

Q Master Theme ~ General Project Settings

Contfig File: Hide the project's configuration file in the Finder

Tools
regions.less : N Skipped Folders: log, _logs, logs, _cache, cache, /soragel

framework/sessions, node_modules

settings.less ® -
styling.less Ugiityss
t b | Syntax Checkers
abs.less
theme.less j::'

int
themeForm.less CoffeeLint

ks

typography.less Framenenks
webfonts.txt Saribon

Bourbon Neat

Bower

You'll want to make sure that you have “Enable

& Javascript in LESS files” checked in whatever compiler
you are using; otherwise, you may run

into an error and your files may not compile.

Esint

NNNNNMNMNNMNNNNNNG

Codekit Frameworks

Bitters

Compass

Zurb Foundation

8 4

STEP #1

Next, we'll add the theme folder
to our code editor. You'll see the
folder structure on the left side
panel, with all LESS files.

Finally, we'll open our framework in the lon console, so that we can
upload our logos and font files to reference as we're coding. When

you hover over the theme name, you'll see a couple of actions appear.

We'll click the +Files button to then drag and drop the logo files and
font files into our framework.

~ accordion.less

7 backgrounds.less

7 buttons.less

7 colors.less

B config.codekit

B config.codekit3

[css

~ custom.less

~ directional-buttons.less
s flow.less

+ form-brand.less

7 generic.less

7 genericbutton.less
images

images.less

ixp.less ece
links.less
lists.less
logo.less ®
mixins.less =
nav.less €
pods.less
regions.less 9
settings.less
styling.less
tabs.less
theme.less
themeForm.less
typography.less
webfonts.txt

\\\\\\\\\\\\\\\‘

e Master Theme ~

Project Settings

Icon an d Name:

Contfig File:

Skipped Folders:

General Project Settings

Q [Master Theme

Hide the project's configuration file in the Finder

log, _logs, logs, _cache, cache, /storage/
framework/sessions, node_modules

STEP #2]

Update the comments at the top
of the theme.less, themeForm.less,
and form-brand.less files.

You'll want to update the Theme Name.css, the Author, and the date.

STEP #3 J

Open the settings.less file and
update the Brand Name.

The first thing we'll be updating is the brand name. This will be what
shows up as the name on the Form micro-theme. You'll want this to
be the name of the brand that you're building.

STEP #4

Update the color swatches &
understand the variables.

The second section in the settings.less file is the Swatches. This is where you
will set the color variables that will be used throughout the rest of the brand.

It's very important to note, as you're looking at this, that these
& are setting the LESS variables for the colors, and will not
necessarily coincide with the CSS class names.

As you work through the settings.less file, you'll notice that the variables come
in sets, and almost all the major variables that you set will have a ‘name’
associated with them. This name variable will be what populates in the
micro-themes in Creative Studio.

The first two color variables are white and black. The next four are typically
the “primary” color or colors for the brand. The next two are the “secondary”
colors, and then the last three are the “neutral”, or typically gray, colors.

STEP #4

Update the color swatches &
understand the variables.

As mentioned in our Mapping to Quick Starts section, it is very important to
map these color swatches to similar shades that are noted in the comments
beside each variable.

For example, @color-a is the main “Greenery” color in our Quick Start theme. As
you look at the Quick Starts, any container / element that has the “Greenery”
color applied will pull down with the color that you set as the @color-a variable.
Occasionally you may want to set multiple variables to one color, and then add
additional variables, to make Quick Starts pull down more seamlessly.

Example: Brand's main colors are navy blue and orange, and they
have a robust secondary palette that should only be used in very
specific cases. Instead of setting the secondary colors to
@color-c, @color-d, etc. (which would make the Quick Starts pull
down with these colors as main background colors), you could
set @color-a and @color-d to navy blue, and @color-b and
@color-c to orange, and then add additional variables for the
secondary palette.

sTer#4.1

Adding additional colors/swatches

If your theme has more than nine colors, you'll want to add your additional
color swatches as variables in this section. We recommend using the
same overall naming convention that we have already set up when adding
new variables.

Example: Add @color-j and @color-j-name, and @color-k
and @color-k-name.

In the next slide, we'll go over adding these new colors to the colors.less
and backgrounds.less files so that we will have them as text and
background color options; if you don't need to add additional colors to
your theme, you can move on to Step 6, updating the logo.

STEP #5

{} colo

.color-a {
color: @color-white

f

Update the colors.less and
backgrounds.less files (if you've .
added color variables) R

h1,h2,h3,h4,h5,h6,a,p {
color: @color-black

Let's start with colors.less. You'll see that we have the CSS classes
set up in this file, and we're pulling the variable names from the }
settings.less file. :

.color-c {
color: @color-a

Remember, the variable names in the settings.less file h1,h2,h3,h4,h5,h6,2,p {
will not always coincide with the names of the CSS I celorsiacolonze
classes. .color-a — the CSS class — is always set to : !

white in our themes. .color-b is always set to black.
Because of this, .color-c (the CSS class) will be using otk o
the @color-a variable. peiiaseit

h1,h2,h3, h5,h6,a,p {
color: @color-i

You'll add your new colors at the bottom of the CSS section, using an }
updated class name and the variables that you set in your
settings.less file.

8

STEP #5

Update the colors.less and
backgrounds.less files (if you've
added color variables)

(in colors.less)
Underneath the CSS section, you'll see a “Colors IXP Information” section.

This is where the micro-theme name and category will be set. You'll notice
that this follows the same order that we've set up in the settings.less file
— .color-a and .color-b, white and black, are first, then the 4 primary colors,
the 2 secondary colors, and the 3 neutral colors. This is the order the
colors will show up in your micro-theme dropdown list.

You will want to add your additional colors to this section as well,
updating the class and variable names accordingly, so that the
micro-themes will show up in Creative Studio.

Save your colors.less file, and open the backgrounds.less file.

8

.color-a
.color-b

.color-c
.color-d
.color-e
.color-f

.color-j
.color-k

.color-g
.color-h
.color-i

.ixp-color
.ixp-color

.ixp-color

.ixp-colors("
.ixp-colors("

@{color-white-name}"); }
@{color-black-name}"); }

"@{color-a-name

~colors("

.ixp-color

'‘@{color-c-na
‘@{color-d-na

‘@{color-i-name}");

"@{color-e-name}");

.ixp-colors("

na

@{color-g-name}");

STEP #5

.background-a {

background: @color-white;

b

.background
: @color-white;
: @rgba(255, 255, 255, .50);

Update the colors.less and
backgrounds.less files (if you've
added color variables)

.background-e {

: @color-

(in backgrounds.less)

background: @color-a;

}

You'll see the exact same overall structure in this file that we have in
the colors.less file. Again, the variable names won't coincide with the
CSS class names; .color-a through .color-d are reserved for Black,
Black Transparent, White, and White Transparent. Your brand
background color CSS classes will start with .color-e.

Add your additional background CSS class(es), and add the additional
micro-themes that coincide.

Save your backgrounds.less file, and go back to your settings.less file.

® =

STEP #6

Update the logo

e The next section in the settings.less file is the logo.

e The logo URL will be found in your framework. You don't need a
folder structure prefacing it. Copy the file name from your
framework, then paste it into your settings file.

e The next two variables are the logo height and width.

e The next two variables are the logo height and width in the SM and
XS viewports, if the logo should be resized in smaller viewports.

e The last variable is the name that will show up in the micro-theme
for the logo.

@logo-a-name:

STEP #6.1

Add additional logo(s)

If your theme has more than one logo, you'll want to add your
additional logo variables. We recommend using the same overall
naming convention that we have already set up when adding new
variables.

Example: Add @logo-b-URL, @logo-b-name, etc.

[alogo-b-URL:
@logo-b-height:
@logo-b-width:
@logo-b-height-sm:
@logo-b-width~-sm:

size variables once, rather than setting them for each @logo-b-name:
individual logo.

TIP: If your logos are the same size, you can set up the

@logo-c-URL:
@logo-c-name:

In the next slide, we'll go over adding additional logos to the logo.less
file; if you don't need to add additional logos to your theme, you can
move on to Step 8, updating the typography.

8

STEP #7

8

Update the logo.less file
(if you've added logo variables)

In the logo.less file, you'll see the same structure as in the colors.less
and backgrounds.less files, a CSS section at the top, and an IXP
section below.

If your logos are the same size, you can add your

& additional logo class to the existing CSS block, and then
just override the background image URL with your new

variable.

If your logos aren't the same size, you'll want to add your CSS block
for the new logo beneath the one that already exists.

o)
DO

STEP #7 J

Update the logo.less file
(if you've added logo variables)

Once the CSS has been added, you'll scroll down to the IXP section header-togorUioht { ixpalogo("e(logosamnanelt) s
and add your new logo(s) to the micro-themes.

Save your logo.less file, and go back to your settings.less file.

STEP #8

Update the typography

The next section in the settings.less file is the Typography section.

You'll start by setting your font family in the @font-family-base variable.
The @font-base-name variable will be the name that is seen in the
micro-theme for this font.

If your brand has more than one font family, you'll want
& to add additional font family and font name variables
below the @font-family-base.

The next two variables will set the base font size, which will be what all
the other variables reference. The two variables after that will set the
default text color and the default background color for the entire body
container. Typically the font-color-base does not change, and we do not
recommend changing the background-color-base. These will be
adjustable within publishing.

The next variable sets the default font weight, which most of the time
should be "normal”.

STEP #8

Update the typography

The next set of variables are for the font sizes. The first two are the
size for the default paragraph text, and the default form input field
text. Then, you'll see that each headline tag, h1 through hé, have their
own size which should be set in “em” units — these will reference that
base pixel size you set above.

Next, you'll set the font weights. If you need more than two, you can
add additional font weight variables here.

The next set of variables are for the font family and the font weight of
the headlines.

The following three variables are for the “Text” category micro-themes
— by default, we have a “Caption”, a “Fine Print”, and a “Display
Headline”, which change the size of the text element when they are
applied. Typically, these don't need to be changed, but if your brand
has a specific styling for these elements, the size can be updated
here.

e-default:
input:

@font-family-h1l:
@fon ght-hl:

ily-h2:
ght-h2:

@font-family-h3: ly-base;
@font-weight-h3: @ - ght-1;

@font-family-h4: ily-base;
@font-weight-h4: @ ight-1;

@font-family-h5: @font-family-base;

-weight-h5: @font-we

@font-family-h6:
t-weight-h6:

e-fineprint:

@font-size-display-headline:

STEP #8

Update the typography

The next variable will set the amount of indent space on the “Indent”
micro-theme.

Then we'll see the mobile specific font size variables. Most of the
time, these will not need to be adjusted, but if your brand specifies
mobile font sizes, they can be applied here.

Lastly, we'll see the variables for line height. These should use a pure
number value, so that the line-height will dynamically adjust based on
the size set in the Rich Text Editor if it has a set value. We have a
separate line height value for the base font size and for headlines.

STEP #8.1

Add an additional font
and font weight el

If your theme has more than one font family, and/or more than two
font weights, you'll want to add your additional font family and font
weight variables to the appropriate sections in the settings.less file.

Example: Add @font-family-b and @font-b-name, add
@font-weight-3, etc.

In the next slide, we'll go over adding the additional font families and
font weights to the typography.less file; if you don't need to add
additional fonts or font weights to your theme, you can move on to
Step 10, updating the links and CTA links.

8

STEP #9O

Update the typography.less file
(if you've added additional font or
font weight variables)

(If using a Third Party to host the font files, like Google)

To add a third-party hosted font file, you'll want to start by adding the
embed link to the hosted font into the webfonts.txt file. You can do
this with the webfonts.txt file that is included in the Master Theme
folder, or you can go into the framework in the lon console and add it
directly to the webfonts.txt file.

Copy the embed code from Google, and then open up the
webfonts.txt file in the framework. Replace the <link> line with your
new embed code, and click Save & Close.

Support post

8

webfonts.txt

Edit the file contents below.

Selected family X
Review
Roboto s
Regular 400 [S)

Add more styles Remove all

Use on the web

To embed a font, copy the code into the
<head> of your html

@ <link> O @import

CSS rules to specify families

font-family: 'Roboto’, sans-serif;

ion > ion_Framework_v4.0 > themes > Quick_Starts_2

64

https://support.ioninteractive.com/hc/en-us/articles/115005504223-Add-a-New-Font-Third-Party-
https://support.ioninteractive.com/hc/en-us/articles/115005504223-Add-a-New-Font-Third-Party-

STEP #9O

Update the typography.less file
(if you've added additional font or
font weight variables)

(If using font files hosted in the lon framework)

Start by adding the font face declarations to the top of our
typography.less file.

You'll update the font family name, which will be used to reference the
font, and the URLs to your files, by copying the file names from your
framework and pasting them into the code. The folder structure in not
required for the URL of the font files.

Support post

8

https://support.ioninteractive.com/hc/en-us/articles/115005504203-Add-a-New-Font-Font-Files-
https://support.ioninteractive.com/hc/en-us/articles/115005504223-Add-a-New-Font-Third-Party-

STEP #9O

Update the typography.less file
(if you've added additional font or o | tontofonily: atore-fomtiy-buse

font-weigh @font-weight-1;
h1l, h2, h3, h4, h5, h6, .nav, .button {

font weight variables) e G
ont-weight: @font-weight-1;

Once you have your font families imported or declared, you'll add your }

CSS for the new fonts to the Fonts section, beneath the “Typography” . font-b {

SeCtiOﬂ font-family: @font-family-base

font-weigh @font-weight-2;
h1l, h2, h3, h4, h5, h6, .nav, .button {

If you have additional font weights, you'll also add your CSS classes font-family: @font-family-base !

font-weight: @font-weight-2;

for the new font weights in this section.

After the CSS has been added, you'll scroll down to the IXP section
and add your new font(s) to the micro-themes.

Save your typography.less file, and go back to your settings.less file. .font-base {.ixp-font("@{font-base-nam

.font-b {.ixp-font("@{font-base-name}

8

sTEP#10

Update the links

The next two sections in our settings.less file are the Links and Icon
Links sections. The first four variables are the inactive link color, the
link hover color, the default link font family, and the default link font
weight.

The next variable sets the link transition between the inactive state
and the hover state.

The last two variables in the default links section set the text
decoration of the links, on the inactive and the hover states.

sTEP#10

Update the CTA links

The CTA links section is next. These control the specific CTA link
micro-themes, which add icons to the :before or the :after of the link.
We use FontAwesome version 4.7 for our icons by default (which can
be found in the webfonts.txt file). These are the codes that you will
see beside each icon variable - example: @cta-icon-a: \f105’,. There
are five options for CTA links by default - arrow, check, link out, caret,
and back.

Typically, nothing more needs to be updated. If you have a specific
link styling that is beyond these standard options, the links.less file
contains all of the styling that targets links.

FontAwesome version 4.7

8

https://fontawesome.com/v4.7.0/icons/

STEP #11

Update the list styles

The Bullets section in the Settings.less file will control the default (} settings.less X
styling of numbered and unordered lists, as well as the two additional (} se b
Bullet List micro-themes.

The first variable sets the margin for both the unordered and ordered
list items. The next variable sets the style for the unordered list AR e O fes
default. @li-style: disc;

@ol-margin: 10px;

The following two variables are specific to the ordered lists. The left
margin for the ordered list as a whole is specified as well as the style
for the ordered list.

@ol-style:

@li-icon-padding:

@li-a-icon:

After that there are variables for the Bullet List micro-themes. The first et
one will set the amount of padding on the list items. Next, we'll see a Q7@ ebulletzaznane:

set of three variables for bullet a, and a set of three variables for bullet 09 @li-b-icon:
b. These will specify the icon, the color, and the micro-theme name for e
each of the Bullet List styles.)

Normally, nothing more will need to be updated, but if there is a
specific styling that is beyond these standard options, the lists.less
file contains all of the styling that targets list stylings.

8

STEP #12

Update the “Styling” category

The “Styling” category is the next section in our settings.less file. This
section contains the miscellaneous styling elements, like rounded
corners, drop shadows, borders, and potentially anything else without
a specific category that may be needed in the theme.

The first set of two variables will set the border radius value for the
“Rounded Corners” micro-theme, as well as the name of that
micro-theme.

The next four variables will set the two default drop shadow styles
that we include.

The following four variables will set the two default border styles that
we include.

The final two variables set the style of <hr> tags.

Typically, these don't need to be adjusted, but if you have additional
stylings that you'd like to include in the “Styling” micro-theme
category, the styling.less file contains all of the CSS and IXP
information for this category.

STEP#13

Update the buttons

The next section in our settings.less file is the section for all the
button stylings.

Buttons have several moving parts involved with them, so let's take a
quick look at the overall structure of the buttons variables, and then
we'll dig in further.

We start off with some global styles that will be applied to all buttons.

Then, we delineate the colors for the six buttons that we have in the
code by default.

After that, we set up the sizes for the buttons: small, medium, large,
and wide. Then, we'll set up the button icon options, and the padding
for those icons.

And lastly, we'll set up the directional buttons.

8

STEP#13

8

Update the buttons

Global Styling

The first variable will set the margin on the button as a whole. The
next three variables will be for the border of the button, setting the
size, style, and radius. Note: If there is not an obvious border style, a
border should still be included — just set the border color and the
background color to the same value.

Next, we'll set the transition between the inactive and the hover state
of the button.

The next three variables will set up the text for the buttons — the text
transform, the font family, and the font weight.

Once these variables have been updated, we'll move on to setting up
the button colors.

{} settings.less ¥ ...
236

@btn-margin:
@btn-border-width:

@btn-border-radius:
@btn-transition:

@btn-text-transform:

@btn-font-family:
@btn-font-weight:

nt-family-base;
@font-weight-2;

STEP#13

Update the buttons

Button Colors

You'll see groupings of variables for each button — buttons A through
F. By default, our code is set up with button A being the ‘'main’ color of
the brand, @color-a; button-b is the outline version of that main color,
button C is white, button D is the outline version of white, button E is
black, and button F is the outline version of black.

The first two variables in the button grouping are for the background
color and the hover background color of the button.

The next two variables in the button grouping are for the text color
and the hover text color.

The next two variables in the button grouping are the border color, and
the border color on hover.

The last variable in the button grouping is the name of the button,
which will show up in the button micro-theme.

8

@btn-color-a:
@btn-color-a-hover:
@btn-text-a:
@btn-text-a-hover:
@btn-border-a:

@btn-border-a-hover:

@button-a-name:

@btn-color-b:
@btn-color-b-hover:
@btn-text-b:
@btn-text-b-hover:
@btn-border-b:

@btn-border-b-hover:

@button-b-name:

‘@{color-a-name} Outline';

STEP#13

Update the buttons

Button Sizes

By default, size a is “small’, size b is “medium’, size c is “large”, and
size d is "wide”, and you'll see that the variables are structured using
this a-b-c-d naming convention.

The first set of four variables will set the font sizes for each of the
respective button sizes. The next set of four variables will set the
padding for each of the respective sizes. The next variable will set the
line height for the “wide" button, specifically — by default, this is set to
the line-height-base variable, but can be changed if needed.

The last set of four variables is to set the name of the button size that
will be shown in the button micro-themes.

@size-a-font-size:
e-b-font-size:
e-c-font-size:

@size-d-font-size:

@size-a-padding:

@size-b-padding:
ize-c-padding:
@size~-d-padding:

@size-d-line-height:

@size-a:
@size-b:
@size-c:
@size-d:

STEP#13

Update the buttons

Button Icons

There are four icon buttons by default in a theme, and you'll see the
four groups of variables that coincide with each icon button style. The
first variable in this section will set the margin on the icon itself, and
will apply to all four icon buttons.

The four groups of variables for the icons will control the icon itself,
which uses FontAwesome and the name of the icon button.

In the next variable section, we can set a different size for the padding
on the icon buttons. By default, they will be the same padding that our
normal buttons have.

FontAwesome version 4.7

8

https://fontawesome.com/v4.7.0/icons/

STEP#13

8

Update the buttons

Directional Buttons

The final section in the button variables is the directional buttons.
These are special buttons that show only arrows when the
micro-theme is applied.

The first set of variables control the margin on each arrow and the
overall size of the arrow. The next set of variables are the icon codes
for each arrow.

Then, we have the variables for the color of the “dark” version of the
arrow, and the “light” version of the arrow.

Finally, we have the name of each of the arrows, which will show up in
the micro-theme.

Typically, the only option that will be updated in this section is the
color of the arrows.

@btn-directional-margin:
@directional-icon-height:
@directional-icon-width:
@directional-icon-font-size:

@directional-icon-down:
@directional-icon-up:
@directional-icon-left:
@directional-icon-right:

@dark-arrow-color:
@light-arrow-color:

@button-up-dark:
@button-down-dark:
@button-left-dar
@button-right-dark:
@button-up-light:
@button-down-light:
@button-left-light:
@button-right-light:

0;

40px;
40px;
40px;

'\f107"';
'\f106';
'\f104';
'\f105";

@color-black;
@color-white;

sTer#13.1

8

Add additional buttons
(or remove buttons)

If your theme has more than six button styles, you'll want to add @btn-color-e
additional button variables to the Specific Styles button section in the
settings.less file. Alternatively, if your theme requires less than six
button styles, you'll also want to update into the buttons.less file.

Example: Add a new block of variables starting with
@btn-color-g.

In the next slide, we'll go over adding the additional button to the
buttons.less file; if you don't need to add additional buttons to your otn-cotor-g:
theme, you can move on to Step 15, updating the pods. bt

tn-text-g:
@tn-text-g-hover

@btn-border-g:

@btn-border-g-hover:

@button-g-name:

@color-black;
@color-black;
@color-white;
@color-black;
@color-black;
@{color-black-name} Outli

@color-wt

@color-w

acolor
@colo

STEP#14

Update the buttons.less file
(if you've added additional button
variables)

Because buttons have several moving pieces to them, there will be a
couple different spots that will need updates within the buttons.less file.

The first section will not be changed — this is the base button styling.

The next section is for the button mixins. When adding a new button, bovaeracal
you'll start by copying the .button-f() mixin block, and updating it to your ’

new button variables (which we recommend would be button-g). If any
additional CSS styling is required, that would also go in this block.

The next section is for setting the text color overrides, so that the
buttons will always have the correct text color. You'll copy the .button-f
block here and update it to the new button variables.

8

STEP#14

Update the buttons.less file
(if you've added additional
button variables)

Nothing will need to be updated in the sizes or icons
sections, so the last update will be to the IXP information
where you will want to add the additional micro-themes.
You'll copy the Button F blocks (including all the Icon
micro-themes), and paste them at the bottom. Then, you'll
update all the variable letters from “f" to “g” (or whatever

you've named your variable).

Save your buttons.less file, and go back to your
settings.less file.

8

STEP#15

Update the pods

The next section in our settings.less file are the Pods. Pods are unique
to the lon platform themes; they are a container (div) that by default
adds padding to all four sides, and controls the background color, text
color, link color, and button color(s) of the elements inside of it.

In the Pods section, our first variable controls the padding that will be
applied to all the pods, on all four sides of the Pod.

The next two sections are the global settings for the “light” pods and
the “dark” pods. These will set the text colors, link colors, and button
colors that will be referenced for each individual background color,
which you will see a bit further down in the code.

STEP#15

Update the pods

Pods a, b, ¢, and d are reserved for black, black transparent, white, and
white transparent in our platform, so we do not have variables set for
those classes in the settings.less file.

Starting with pod e, we'll see a group of variables similar to the
buttons. The first variable will set the background color on the pod.
The second variable should be set to either “light”, or “dark”. This will
reference the global values that you set above, selecting one of those
two blocks for the text, link, and button colors. The last variable will be
the name of the pod, which will be shown in the micro-theme.

form-pod-a is a required CSS class, but you can treat this as either a
form-specific pod, or as any other pod, depending on the brand.
Example: If your brand utilizes a white pod behind your forms, you can
duplicate the white pod in the form-pod-a. This would ensure that the
Quick Starts that use the form-pod styling would pull down with your
form-specific pod.

STer#15.1

@color-d;
light;

@color-d-name;

Add additional pods . o
o
If you added colors to your swatches and those colors should be apod-j-name: m
available as Pods, you'll want to add pod variables for those _ i
additional colors. d—k-color: light;
Example: Add a new block of variables starting with s uf,q, ;
@pod-m-bg, beneath the .form-pod-a block. @pod-1-name: @color-h-r
a n-pod-a-bg: lor-i;
In the next slide, we'll go over adding the additional pods to the Ii:i pod-a-na @color-i
pods.less file; if you don't need to add additional pods to your theme, g — —
you can move on to Step 17, updating the accordions & tabs. @od-n-color: light;

@pod-m-name: @color-j-name;

@pod-n-bg: @color-k;
@pod-n-color: light;
@pod-n-name: @color-k-name;

STEP#16

Update the pods.less file
(if you've added additional pod
variables)

In the pods.less file, you'll see the same overall structure setup that
the other interior less files have, with the CSS first, and then the IXP
information.

Pods have a slightly different CSS structure within them — they utilize
a mixin with two parameters. The first parameter should be the pod
color (the "light” or “dark” that will set the text color, link color, and
button color), and the second should be the background color of the
pod. This mixin can be found in the mixins.less file.

To add a new pod, simply copy the & pod-I block of code (the mixin),
and paste it inside the overall .pod class, below the & pod-I block.
Then, update the values in the mixin to match the variables in your
settings.less file.

8

STEP#16

Update the pods.less file
(if you've added additional pod
variables)

Scroll down to the IXP information. You'll see that this is organized in
the same order that the Colors and Backgrounds files are; remember,
the order of this list will be the order that these micro-themes appear.

color-black-n
Y

color-black-name} Pc

Copy one of the pod micro-theme lines, and paste it. Update your o { - xppod (" . i)
variables to match, then save the pods.less file, and go back to your
settings.less file.

.pod-j

. pod. pod-k

STEP#17

Update the accordions & tabs

The next sections in the settings.less file are the Accordion
settings and the Tab settings. These are very similar in the way
they are structured.

Both Accordions and Tabs have a default set of stylings that will
be applied automatically without needing to add a micro-theme,
and an alternate set of stylings that is shown when a
micro-theme is applied to the element.

In the settings, the default styles will come first, then the
alternate styles.

STEP#17

Update the accordions & tabs

Accordions - Default

The first variable in the Accordion section will set the font size of the
accordion toggle. The second variable sets the base font size of the
content inside the accordion itself. The next variable sets the padding
on the accordion toggle, and the final variable in the first set of
variables will set the margin on the toggle.

The next two variables refer to the icon that is shown on the right side
of the toggle, and uses FontAwesome by default.

The next set of variables will set a border on the accordion toggle; the
inactive state, the active state, and the hover state, as well as
delineating whether the border should be rounded or not.

The next three variables will set the toggle background color; the
inactive state, the active state, and the hover state.

The last three variables in the default accordion will set the toggle text
color for the inactive state, the active state, and the hover state.

@accordion-fon
ccordion-slide-font
ccordion-p

ordion-m

@accordion-¢ n:

@accordion-c d-icon:

@accordion-border:

2~-background
daccordion-acti kground
@accordion-f

@accordion-toggle-color:

@font-color-base;

STEP#17

Update the accordions & tabs

Terminology

e The accordion toggle referenced is the default state for the
clickable accordion bar.

e The accordion hover referenced is the hover state for the
clickable accordion bar.

e The accordion active referenced is the active, or open, state
for the clickable accordion bar.

INTERACTIVE ELEMENTS

ACCORDIONS 0

Section 1

Section 2

STEP#17

Update the accordions & tabs

The accordion toggle icon can be adjusted to be on either the right or
left side of the accordion toggle, dependent on brand.

To update this, you'll want to go into the accordions.less file. You'll see
an :after on the default accordion, and a :before on the alternate
accordion.

The :after placement will be used if you want the icon to be on the
right side of the toggle. The :before placement will be used if you want
the icon to be on the left side of the toggle.

To update the default accordion to have the icon on the left side, copy
the :before from the alternate CSS code, and paste it into the default,
before the :after, and replace the :after code with “display:none;”.

Display:none is important to keep in the code, as this
overrides the platform default :after on accordion
elements.

STEP#17

Update the accordions & tabs

Accordions - Alternate

Next is the alternate styling for the accordion. This uses the same
font size as the default accordion. The first variable will be the name
that is shown on the micro-theme for the accordion. The next variable
is the padding for the accordion toggle.

Next, we'll set the variables for the open and close icons that are on
the left side of the toggle. The alternate accordion border is only set
on the bottom by default, and the next variable contains a
box-shadow that can be added if desired.

The next six variables will be the same as the default accordion,
setting the toggle background colors in all three states, and the toggle
text colors in all three states.

Typically, adjustments don't need to be made beyond these settings,
but if your brand guidelines require a specific accordion styling, the
accordion.less file contains all the CSS styling for the accordions.

8

STEP#17

Update the accordions & tabs

Tabs - Default

Tabs have a similar setup to accordions in their variables. The first
variable will set the margin on each individual tab. The second will set
the padding for each tab. The third will set the border radius for the
tabs themselves.

The next variable is the transition setting between tabs.

The next two variables set the font size for the tab itself, and the font
size for the content inside the tab element. The final variable in this
group will set a border radius on the tab content, if desired.

The next six variables will be similar to the accordions; they will set
the background color of the tabs in all three states, and the text color
of the tabs in all three states.

The last group of variables will apply a border, if desired, to the tabs,
and a border to the content inside the tabs. The final variable will set a
background color on the content inside the tabs.

@tab-margin: 9 0 Opx 5px;
@tab-padding: 12px 25px;
@tab-border-radius: ©;
@tab-transition:

@tab-font-size:
@tab-slide-font-size:
@tab-slide-border-radius: 0;

@tab-toggle-background: @color-e;
@tab-active-background: @color-a;
@tab-hover-background: @color-e;

@tab-toggle-color: @font-color-base;
@tab-active-color: @color-white;
@tab-hover-color: @color-a;

@tab-toggle-border:
@tab-active-border:
@tab-hover-border:
@tab-slides-border:
@tab-slide-bg: @color-white;

STEP#17

Update the accordions & tabs

Tabs - Alternate

The alternate variables will follow that same structure — the
name of the tab is first (which will show up in the micro-theme),
then the margin that should be on each tab. The background
colors for the tabs is then specified. Followed by the bottom
border of the tab, similar to the accordions. A box-shadow can
also be added, if desired.

Next, we'll set the text colors for the tabs. And finally, we'll set a
border color on the tab content, if desired, and a background
color on the tab content.

Usually, nothing will need to be edited beyond this, but if your
brand guidelines require a specific tab styling, the tabs.less file
contains all the CSS styling for the tabs.

@tab-a-name: ‘@{color-a-name} Alternate';

@tab-a-margin: © @ S5px 5px;

@tab-a-toggle-background: @color-white;
@tab-a-active-background:
@tab-a-hover-background: @color-a;

@tab-a-border-bottom: 2px @color-e;
@tab-a-box-shadow: none;

@tab-a-toggle-color: @font-color-base;

@tab-a-active-color: @color-white;
@tab-a-hover-color: @color-white;

@tab-a-slides-border-color: none;
@tab-a-slide-bg: @color-white;

7

STEP#18

Update the Flow element

The Flow settings will control the styling for the flow dots, numbers,
and progress bar.

The first set of variables are the variables for the colors overall. The
first variable will set the color of the off state for the light; the
second will set the color of the off state for the dark version. The
third will set the color of the hover state and the fourth will set the
color of the active state.

The next three will set the color of the text on the numbers progress
bar, off state, hover state, and active states respectively.

Then, you'll see the variables for the three specific types of Flow
indicator bars — the numbers, the dots, and the progress bar.

STEP#18

8

Update the Flow element

The numbers variables come first, and they will determine the size
of the entire number block, the space between the numbers, the
rounding on the corners, and the text size of the numbers.

Next are the dots variables, which will adjust the size of the dot, the
space between the dot, and the border size on the active border.

Lastly are the variables for the progress bar styling. The first variable
will adjust the radius of each of the individual bars. The second
variable will adjust the radius of the first and last bar.

Next is the variable for setting the height of the progress bars; then
setting the border; and lastly setting the margin between each bar.

Typically, nothing will need to be edited beyond this, but if your
brand guidelines require a specific flow styling, the flow.less file
contains all the CSS styling for the flow element.

STEP#19

Update the form stylings

The next section in our settings.less file will handle the styling of the
forms within your brand. The majority of the time, you won't need to
adjust much in this section.

The first set of variables in this section will be some global variables
that will be referenced further down in the form settings, as well as
within the form-brand.less file.

STEP#19

8

Update the form stylings

The first grouping of variables will be styling for the input fields.

The first variable is the color for the text in the input fields — not the
placeholder color, which is set within our Swatches section at the top
of the settings file, but the color of the text when the field has a value.

The next variable is the background color for the input fields. Next, we
have two variables for the borders on inputs — a border color, and a
border variable that should contain the size, type, and color of the
intended border. The color and the color in the full border variable
should generally be the same.

The next variable controls the padding of the input fields.

After that is a hover color for the text in the input field, if desired. Then,

the hover color for the background of the input fields, if desired. Note:
these are rarely updated.

Lastly in this group of variables is the border radius for the input fields.

an

STEP#19

Update the form stylings

The next group of settings are mainly for support of legacy / older
forms (used in the themeForm.less file), and shouldn’t really need to
be adjusted. The only variable that is used in the Freestyle form
(form-brand.less) is the @form-padding variable, which will control
the size of the dropdown input padding. This is slightly different
padding than the @input-padding variable because of the way that
dropdowns are built in the backend of the lon platform.

STEP#19

Update the form stylings

The next three variables will be utilized for the Freestyle forms, and
will control the Focus border style, the padding on the validation
asterisk, and whether or not the form should have support for UE8
radio/check buttons.

Next, you'll see variables for all the different types of inputs available
within Freestyle forms. The majority of the time, none of these values
should be changed, as they will be controlled by those global variables
that you've set in the above settings, but if your brand requires a
specific styling, you can make updates to padding, font sizes, colors,
border colors, and validation asterisks as needed.

STEP#19

8

Update the form stylings

To note, in the Dropdown section of the settings, you'll see a slightly
different structure than the rest of the input types. There are two
“styles” for the Dropdown fields by default. We use FontAwesome
version 4.7 for our icons by default (which can be found in the
webfonts.txt file). One will use a FontAwesome icon as the dropdown
symbol, and the other will use border styling to create two triangles
(one up, and one down) as the dropdown symbol.

@form-brand-dropdown-arrow-style should be set to either “icon” or
“border”. Icon will use a FontAwesome icon to create the dropdown
symbol, and the variables for those should be set in this
“FontAwesome icon arrow” section below.

Border will set the up and down arrows as the dropdown symbol, and
will use the border color as the arrow color. The size of the arrows can
be adjusted by changing the variable under the “CSS border arrows”
section below.

FontAwesome version 4.7

https://fontawesome.com/v4.7.0/icons/

STEP#19

Update the form stylings

The Library forms section just underneath this should not need to be
adjusted.

Most commonly, nothing will need to be edited beyond this, but if your
brand guidelines requires a more granular or specific form field
styling, the form-brand.less file contains all the CSS styling for the
Freestyle form elements.

sTeP #20

Update the regions

The next section in our settings.less file handles what we call
“Regions”. Regions are unigue to the lon platform themes. They are a
container (div) that by default adds padding to the top and bottom of
the container and controls the background color, text color, link color,
and button color(s) of the elements inside of it.

In the Regions section, the first two sections are the global settings
for the “light” regions and the “dark” regions. These will set the text
colors, link colors, and button colors that will be referenced for each
individual background color, which you will see a bit further down in
the code.

@region-color-light:
@region-link-color-light:

@region-button-1-light:
@region-button-2-light:

@region-color-dark:
@region-link-color-dark:

@region-link-color-hover-dark:

2gion-button-1-
@region-button-2-dark:

@color-white;
@colo ite;

: @color-white;

@font-color-base;

@link-color;

@link-color-hover;
i

sTeP #20

Update the regions

The next sections are the variables for each Region. They are
structured in the same way as the Pods, with one addition. Each set
of Region variables will have its own padding.

As a best practice, these Regions should not have left
or right padding — if they do, they will push the
Responsive Grid off the browser screen in the SM and
XS viewports.

The Regions are:

Pre-Header

Header (x2)

Inner Content Wrapper / Pre-Content
Content (x3)

Post-Content

Footer

Post-Footer

STEP #20

Add additional regions

If you would like to add additional regions, you will want to add the
variables to these sections.

Example: Add a new block of variables in the Content
regions section, starting with @content-d-bg.

In the next slide, we'll go over adding the additional regions to the
regions.less file; if you don't need to add additional regions to your
theme, you can move on to Step 22, updating the navigation.

@content-c-name:

Jcontent-d-bg:

@content-d-color:

@content-d-name:

r-~white-name;
—e;

"~e-name;

or-a-name;

@color-j;
Llight;
@color-j-name;

STEP #21

8

Update the regions.less file
(if you've added additional region
variables)

In the regions.less file, you'll see the same overall structure setup that
the other interior files have, with the CSS first, then the IXP
information. The regions.less file is also split into sections the way
that the settings are, with each Region’'s CSS and IXP information
grouped together.

Regions have the same CSS structure that the pods do — they utilize
a mixin with four parameters. The first parameter should be the region
color (the “light” or “dark” that will set the text color, link colors, and
button colors), the second should be the background color of the
region, the third should be the padding, and the fourth should be the
font size. This mixin can be found in the mixins.less file.

STEP #21

Update the regions.less file
(if you've added additional region
variables)

To add a new region, scroll to the appropriate region section.

Example: If adding a new content region, scroll to the
Content section.

Copy the &.content-c block of code (the mixin), and paste it inside the
overall .content class, below the & content-c block. Update your
variables to match the variables that you added.

Beneath the CSS, you'll see the IXP information. Copy the
.content.content-c line, and paste it below. Update your variables, then
save your regions.less file, and go back to the settings.less file.

8

STEP #22

Update the navigation

The last section in our settings.less file is the navigation.

There are two navigation styles included in the theme, and the
settings for them are structured similarly to the Accordions and Tabs;
the default navigation will come first, and then the
secondary/alternate navigation.

The first set of variables will be for the overall navigation styles. The
first variable will set a background color on the entire navigation
element — we recommend this remain transparent, so that the
background color can be controlled by the region or container that the
navigation is inside.

The next two variables will set the color of the text/links and the font
size. The next two will set the margin and padding for the entire
navigation element. Then you'll set a text transform, if desired, and the
alignment of the text inside the navigation (as a whole), as well as the
float of the entire navigation element.

Finally, you'll set the font family and the font weight.

STEP #22

Update the navigation

Navigations are built with a couple different pieces, so the next
settings that you will see have some “duplicates”. The next set of
variables will determine the styling for the element. This is the
element that will hold the links inside it, and you'll have the option to
set the float on those specifically.

The next variable will be either true or false, and will set a border
between each navigation item.

The next two variables will set the padding and margin on the
navigation items.

STEP #22

Update the navigation

The next set of variables will affect the navigation <a> element. This
element is also referred to as the Nav Link, and it sits inside the
element.

The first variable will set the padding on the <a>. Acolorshover:

ink-color-ac
ink-color-ac

The next six variables will set the background color, the background
hover color, the background active color, and then the text color on
hover, active, and active hover, respectively.

After the <a> variables, you'll have settings for the mobile specific
navigation. Typically the only settings that may need to be adjusted in
this section are the hamburger bar colors. You'll also have the option urger-color-ho
to set up the margin on the hamburger menu, the font size, the
padding, and the text alignment.

@active-state-name:

The last option for the default navigation will be the name for the
micro-theme on the active state. Typically this shouldn't need to be
updated.

@color-b

STEP #22

Update the navigation

The secondary/alternate navigation will have the same settings as the
primary/default navigation, with the addition of the first variable,
which will set the name for the navigation style that will be shown on
the micro-theme.

Usually, nothing will need to be edited beyond this, but if your brand
guidelines requires a more granular or specific navigation styling, the
navigation.less file contains all the CSS styling for the navigation
elements.

Testing & Proofing

Themekit Testing & Proofing

After uploading your CSS files and updating your themekit, it is time to
test your new theme.

Updating the themekit page will be the themekit test — you'll want to
make sure that every element has the correct micro-theme applied,
that the micro-theme is labeled correctly, and that it is styled as
expected. You'll want to click every element on this page while testing
and proofing.

If you've added additional micro-themes that are not included by
default, you'll also want to ensure that you have added those to your
themekit page, and applied the micro-themes by using the
Micro-theme dropdown (rather than adding the CSS class directly to
the element).

TIP: Themes can cache, so if you update your CSS files
and notice that the themekit page doesn't appear to be
updating your styling, try testing in an incognito
window, clearing your cache, or doing a hard refresh on
your page to clear the cache.

Color O

B J U kK & & W Sz - Fumat -
= = X x QB L«

B source

Browser Testing

If your theme is a standard/typical theme, and you haven't made
extensive CSS updates or adjustments, then browser testing will be
optional - all of our default settings and stylings are compatible
across all major browser versions.

If you've made more specific styling updates, however, we would
strongly recommend that you test all major browsers for
compatibility.

Chrome
Firefox
Safari
Edge
Android
i0S

° . logot 2020 ANNUAL REPORT (ISl
Quick Start Testing _

What to look for?

Once your themekit page has been updated and tested, you'll pull three
Quick Starts into your Theme campaign and apply your new theme to
them. Internally, we typically test the Branded Infographic, Basic Long
Page White Paper, and an assessment (like the Assessment with
Benchmark Results), to test a variety of experience types.

1. Make sure that the colors are mapped correctly.
This is where understanding the color mappings will be important.
When pulling down Quick Starts to test, you'll want to check that the .
colors don't conflict with each other, and that the theme has avoided -
things like having white text on a light background.

2. Make sure that the stylings apply properly.
If you've made any special stylings, like with the navigation, tabs, or
accordions, you'll want to double check that those apply properly.

3. Make sure that the brand looks correct based on guidelines.
Some things will need to be edited during publishing, but you'll want
to make sure that the brand’s secondary or tertiary colors aren't
pulling in as a primary color, that the default fonts are correct, etc.

How to fix common issues

My logo isn't sized correctly / the aspect ratio looks wrong.

This can occur if you haven't updated the dimensions of the logo in
the settings.less file. There are two sets of dimensions, one for the
desktop viewport, and one for the mobile viewport. You'll want to
make sure that you've updated both of these dimensions to the
correct logo sizes.

If you've added additional logos, you'll want to make sure that you've
updated your logo.less file, and used the correct LESS variables for
your sizes.

@logo-a-name:

How to fix common issues

My colors aren’t looking great on the Quick Starts / I'm seeing light
text on light backgrounds or dark text on dark backgrounds.

This can happen if you haven't set up your Swatches at the top of the
settings.less file to match the Quick Start class colors. You'll want to
take note of the comments beside each color variable; they will tell
you what color they map to in the Quick Start theme, to give you an
idea of whether that color should be a light color or a dark color.

If your color palette is smaller or you only have one main primary
color, with others being very secondary / sparse, we recommend
mapping the main colors all to the same primary color(s), and then
adding additional color variables for the secondary colors. This way,
the Quick Starts will pull down using just that primary color, and when
the designer is publishing, they can use the additional micro-theme
colors sparingly as they wish.

JAMES LUCIA
Creative & QA Lead

james.lucia@rockcontent.com

