TRANSITIONING TO A SAFE AND SECURE ZONAL ARCHITECTURE

S32G Vehicle Network Processor as the Foundation
Automotive E/E Architecture Evolution Paths: Logical and Physical
Potential Automotive OEM Architecture Migration Paths → Logical + Physical

- Flat tunneling
- Hybrid zonalization
- Deep zone optimization
- Distributed computing

CARMAKER-E
CARMAKERS-A,B,C
CARMAKER-D
CARMAKER-F

Logical Path
Physical Path

Potential Automotive OEM Architecture Migration Paths → Logical + Physical

- Flat tunneling
- Hybrid zonalization
- Deep zone optimization
- Distributed computing

CARMAKER-E
CARMAKERS-A,B,C
CARMAKER-D
CARMAKER-F

Logical Path
Physical Path

PUBLIC
OVERVIEW

• We’re tasked with transitioning legacy to Zonal E/E Architecture
 • GuardKnox will assume the role of OEM engineering
• We’ll have a workshop with suppliers
 • NXP and Green Hills Software
APPROACH

• WHY ... ?
• WHAT ... ?
• WHERE ... ?
• HOW ... ?
• WHEN ... ?
WHY?
THE AUTOMOTIVE INDUSTRY IS IN THE MIDST OF A PARADIGM SHIFT

PROBLEMS & CHALLENGES

SCALABILITY WALL

• Too many ECUs
• Too much wiring
• Limited network configurations
• Coupled functionality

INDUSTRY LANDSCAPE

• New propulsion
• New consumer
• New competitors
• Upcoming regulation
ETHERNET BACKBONE - TOPOLOGY OPTIONS

PHYSICAL TOPOLOGY

LOGICAL TOPOLOGY

TREE TOPOLOGY - PHYSICAL LAYOUT

STAR TOPOLOGY - PHYSICAL LAYOUT

TREE TOPOLOGY - LOGICAL LAYOUT

STAR TOPOLOGY - LOGICAL LAYOUT
ZONAL ARCHITECTURE DEVICE CLASSES

VEHICLE SERVER
(general purpose computer)

ZONAL GATEWAY
(localized connectivity hub)
GOALS

01 END UP WITH A ZONAL ARCHITECTURE

02 REDUCE COSTS AS FAST AS POSSIBLE

03 BACKWARD AND FORWARD COMPATIBLE
WHAT?
WHICH DEVICE?

VEHICLE SERVER – ECU REDUCTION

• Transition to server(s)
• Network agnostic
• Agnostic to physical layout
• Cost reduction for any car
• Scales up / down
• Major impact on cost (engineering)

VS.

ZONAL GATEWAY – WIRING REDUCTION

• Introduce new gateway(s)
• Changes to backbone
• Depended on physical layout
• Cost reduction for wiring burdened car
• Unclear scaling
• Some impact on cost (material and labour)

MEETS OUR GOALS

WE’LL KEEP THAT IN MIND
OBJECTIVES

CONSOLIDATED PLATFORM
- Function = software package
- Stop ordering individual ECUs

DE-FRAGMENT ECO-SYSTEM
- Runtime environments and versions
- Shorten development, certification and integration times

FUTURE PROOF
- Single design fits many use cases
- Incremental functionality development
COMMONALITY

- Powertrain = μC + Interfaces
- Cockpit = μP + μC + Interfaces + GPU
- Connectivity = μP + Interfaces + Wireless
- Body = μP + μC + Interfaces
- Autonomy / ADAS = μP + μC + Interfaces + Vision / GPU
- Battery = μC + Interfaces + PLC / Wireless
- Gateway = μP + μC + Interfaces
- Legacy = μP / μC + Interfaces + ASICs

SERVER = μP + μC + Interfaces
WHERE?
CONSTRANTS

- Replace an existing ECU
- Biggest network outreach
- Place to scale

“CENTRAL” EXISTING ECU → SERVER PLATFORM
GATEWAY ARCHITECTURE

BLOCK DIAGRAM

NETWORK TOPOLOGY (STAR-ISH)
GATEWAY TO ZONAL

18 | www.guardknox.com
DOMAIN TO ZONAL

GDC

GDC + SERVER

[Diagram showing the flow from GDC to GDC + Server]
HOW?
VEHICLE SERVER “TEMPLATE”

- Consolidated
 - Single SoC
 - Software modules
- Mixed criticality
 - Safety
 - Security
- Scalable
 - Clustering
 - Device family
 - Runtime environments
- Secure (inclusive safety)
 - Defense in depth
 - Logical / physical isolation
REQUIREMENTS

01 Micro-processor (application)
02 Micro-controller (real-time)
03 Up to ASIL-D (applications are unknown)
04 All automotive interfaces (legacy and Ethernet)
05 Multiple runtime environments (hypervisor / processors)
06 Scalable platform (hardware family variants)
07 Strong isolation (safety and security)
08 NO APPLICATION RE-DEVELOPMENT!
S32G is a New Type of Automotive Processor:
Vehicle Network Processor

PROCESSING
- Lockstep Microcontrollers
- Cluster Lockstep Microprocessors
- Automotive Networks Acceleration
- Ethernet Packet Acceleration

NETWORKING
- 20 x CAN/CAN FD Interfaces
- LIN and FlexRay™ Interfaces
- 4 x Gigabit Ethernet Interfaces
- PCI Express Gen 3 Interfaces

SAFETY & SECURITY
- ASIL D Functional Safety Support
- Advanced Hardware Security Engine

APPLICATIONS
- Service-oriented Gateway
- Domain Controller
- ADAS/AD Safety Controller
- Vehicle Compute / Zonal Gateways

www.nxp.com/S32G
S32G Processor Supports Vehicle Architecture Transformation

CONNECTIVITY
- **INFOTAINMENT & IN-VEHICLE EXPERIENCE**
- **ADAS & HIGHLY AUTOMATED DRIVING**
- **SERVICE ORIENTED GATEWAY**
- **POWERTRAIN & VEHICLE DYNAMICS**
- **BODY & COMFORT**

LEGACY APPROACH | FLAT
- UNFIT TO FUTURE MOBILITY – SECURITY AND SCALABILITY ISSUES
 - Low bandwidth, one MCU per application

LOGICAL RESTRUCTURE | DOMAINS
- ENABLING SCALABLE GROWTH, CONSOLIDATION AND NEW FEATURES LIKE AUTONOMOUS VEHICLE
 - High bandwidth network
 - Gateway key to communication between domains
 - Domain Controllers for local networking and ECU consolidation

PHYSICAL RESTRUCTURE | ZONES
- REDUCING WIRING COMPLEXITY AND ENABLING THE USER-DEFINED CAR
 - Domains virtualized by SW – enabling high flexibility
 - Easy enable/disable or update functions
S32G274A: ASIL D Vehicle Network Processor

On-the-Fly
Secure External
Flash Memory

Functional
Safety Design

Embedded
Hardware
Security with
PKI Support

MCUs for real-
time processing

MPUs for apps
and services

Automotive
Networks
(CAN/LIN/FlexRay)
Hardware
Acceleration

Automotive
Gigabit Ethernet
Hardware
Acceleration

System Peripherals and Interfaces
including 2x2 PCI 3.0

System Peripherals and Interfaces
including 2x2 PCI 3.0
S32G Scalable Family Applications*

Advanced Service-oriented Gateway, Connected Gateway, AD Domain Controller

Maximum processing performance for services, domain control and communications stacks ♦ Maximum ASIL D performance

Basic Service-oriented Gateway, Domain Controller

Maximum real-time performance ♦ Application processing for services and domain control

Ethernet Gateway, Management Controller

Application processing for management and control ♦ Some real-time processing for automotive networking

Low/Mid-range Gateway, Zonal I/O Controller, Safety Controller

Maximum real-time performance for automotive networking and safety control ♦ No applications processing

*These applications are only for guidance and can vary based on customer requirements.
Accelerating Transformation Across the Automotive Ecosystem

Carmakers
- Proof of concept
- Benchmarking
- Vehicle data insights
- New services deployment

Application Developers
- Innovation platform
- Software development
- Test and validation
- Demo showcase

Cloud & Service Providers
- Symbiotic compute
- Over-the-Air (OTA) updates
- Machine learning deployment
- Edge service deployment

NXP S32G Reference Design Board Accelerates Development
Mixed-Criticality as an Enabler

- The main driver is the application landscape
 - Domain controllers & vehicle computers
 - ADAS/AD Applications
 - Gateways
 - Modular software deployment
 - ‘App-store’ like software distribution

- Heterogeneous computing platforms to the rescue
 - Require vast middleware packages
 - Enable rich connectivity functions

- Mixed criticality on a single platform is the key
A failure in an element is caused by a fault

Faults can have diverse root causes
- Hardware faults – bit flips, erratas, etc.
- Software faults – bugs
- Malicious attacks

FFI prevents failures from propagating (cascading)
- Relevant for the safety functions of an ECU

FFI is critical for separating mixed-criticality systems
- Prevents failures to cascade from “lower” ASIL to “higher” ASIL
- Prevents failures to cascade within the same ASIL domain
Mixed-Criticality in Action

- A pre-certified secure microkernel
 - Minimal codebase, low footprint, efficient hardware resource usage
 - Trusted secure base for separation
- Least privilege model provides “containerization”
 - Additionally enhanced by virtualization capabilities

Green Hills Software INTEGRITY RTOS

Core 1 ••• Core n ••• NXP S32G ••• Packet Forwarding Engine ••• Peripherals
SOFTWARE STACK LAYOUT

- **App domain**
 - Quad A53
 - Split/lock
 - RTOS
 - Hypervisor

- **RT domain**
 - Triple M7
 - Lockstep
 - RTOS
 - Bare metal

- **Accelerators**
 - Network
 - Security

SYSTEM ARCHITECTURE

1. **App domain**
 - Arm Cortex-A53 (split/lock)
 - Green Hills Software INTEGRITY RTOS (Separation Kernel)
 - Hosted OS
 - Multivisor VMM (Hypervisor)

2. **RT domain**
 - Arm Cortex-M7 (Lockstep)
 - Safety RTOS
 - RTOS

3. **Interfaces and accelerators**
 - Arm Cortex-M7 (Lockstep)
 - Arm Cortex-M7 (Lockstep)
HARDWARE ENFORCED ISOLATION

- App domain → MMU
- RT domain → MPU
- Interconnect → XRDC
CONSOLIDATION: USE CASE

- Runtime
 - AUTOSAR Classic
 - AUTOSAR Adaptive
 - Linux
 - Bare metal
- Vendors
 - AUTOSAR Classic
 - ECU suppliers
- Criticalities
 - ASIL-D
 - ASIL-B
 - QM
 - Unspecified

Legacy ECUs

- AUTOSAR Classic A (ASIL-D)
- AUTOSAR Classic A (ASIL-B)
- AUTOSAR Classic B (ASIL-B)
- Linux + AUTOSAR Adaptive (QM)
- Bare metal (?)
USE CASE IMPLEMENTATION A

- **App domain**
 - Quad A53
 - Split/lock
 - RTOS
 - Hypervisor
- **RT domain**
 - Triple M7
 - Lockstep
 - RTOS
 - Bare metal
- **Accelerators**
 - Network
 - Security

![Diagram showing USE CASE IMPLEMENTATION A](image-url)
USE CASE IMPLEMENTATION B

- **App domain**
 - Dual A53
 - Split/lock
 - RTOS
 - Hypervisor

- **RT domain**
 - Single M7
 - Lockstep
 - RTOS

- **Accelerators**
 - Network
 - Security

Diagram:

- App domain
 - Dual A53
 - Split/lock
 - RTOS
 - Hypervisor

- RT domain
 - Single M7
 - Lockstep
 - RTOS

- Accelerators
 - Network
 - Security

- **Autosar Classic (Vendor A)**
- **Autosar Adaptive**
- **Autosar Classic (Vendor B)**
- **Multivisor VMM (Hypervisor)**

- **Green Hills Software INTEGRITY RTOS**
 - (Separation Kernel)

- **Arm Cortex-A53**
 - (Split/lock)

- **Arm Cortex-M7**
 - (Lockstep)

- **Interfaces and accelerators**
ZONAL GATEWAY

• Re-use gateway + server design
• Optimize case by case
UNIFORMITY

• Maximize software re-use
 • MCAL / BSP
 • Applications
 • Guest OS / middleware / eco-system

• Hardware scaling up / down
 • Pin compatibility
 • Vendor roadmap
 • Product / chip family and variants

• Interchangeable parts
 • May not need to maintain old ECUs
 • May not need to stock up parts for over a decade
 • Used car factory options “retrofitting”

• Vendor complementary peripherals
 • Design optimized PMIC, Ethernet switches, transceivers...
CHALLENGES AND PITFALLS

• Cost reduction
 • Across entire E/E
 • Vehicle lifecycle

• Not a traditional supplier engagement
 • Requires expertise - no general solution
 • Can’t spec-out “make me have zonal”

• DMIPS performance rating
 • Accelerators and offloaders are left out
 • Today mostly a compiler optimizer benchmark
WHEN?
PARTNER MAPPING

GUARDKNOX VEHICLE SERVER REFERENCE DESIGN

SAFETY- AND SECURITY-CRITICAL APPS

- Applications
- Safe OS 1 (e.g. AUTOSAR Classic/Adaptive)
- GuardKnox Secure Comm.
- GuardKnox Security Monitor
- GuardKnox Lockdown Core
- GuardKnox Crypto
- GuardKnox Comm. Agent
- Third Party Applications and Services

NON-REAL-TIME APPS

- Applications
- GuardKnox Cloud Connectivity
- GuardKnox Container
- Third Party Applications and Services
- Safe OS 2
- Linux
- INTEGRITY Multivisor
- INTEGRITY Multivisor
- INTEGRITY Multivisor

Green Hills INTEGRITY RTOS

NXP S32G Vehicle Network Processor
THANK YOU

Idan Nadav
Idan@guardknox.com
http://www.guardknox.com

Nikola Velinov
Nvelinov@ghs.com
http://www.ghs.com

Brian Carlson
Brian.carlslon@nxp.com
http://www.nxp.com