

PowerShell Security

 Limit language features

 Secure communication

 Track abuse

Michael Pietroforte

Wolfgang Sommergut

Cover Designer: Claudia Wolff

1. Edition 2020

ISBN: 9781672847827

© 2020 WindowsPro / Wolfgang Sommergut

All rights reserved. No portion of this book may be reproduced in any form

without permission from the publisher, except as permitted by U.S. copy-

right law.

Every effort has been made to ensure that the content provided in this

book is accurate and helpful for our readers at publishing time. However,

this is not an exhaustive treatment of the subjects. No liability is assumed

for losses or damages due to the information provided. You are responsi-

ble for your own choices, actions, and results.

Michael Pietroforte

Wolfgang Sommergut

PowerShell Security
Limit language features, secure communications, track abuse

 Control execution of scripts using execution policy, code signing

and constrained language mode

 Secure PowerShell remoting with SSH und TLS

 Delegate administrative tasks with JEA

 Audit and analyze PowerShell activities, encrypt logs

 Improve code quality following best practices

About the authors
Michael Pietroforte is the founder and editor in

chief of 4sysops. He has more than 35 years of

experience in IT management and system

administration.

Wolfgang Sommergut has over 20 years of expe-

rience in IT journalism. He has also worked as a

system administrator and as a tech consultant.

Today he runs the German publication

WindowsPro.de.

Table of contents

1 PowerShell as a hacking tool: Prevent abuse of scripts 8

1.1 Lax default configuration of PowerShell 9

1.2 Hacking tools for PowerShell .. 10

1.3 General blocking of PowerShell .. 12

1.4 Circumvention through alternative shells 14

1.5 Secure PowerShell with integrated mechanisms 15

2 Restrict execution of scripts .. 20

2.1 Setting an execution policy ... 20

2.2 Signing PowerShell scripts ... 25

2.3 Reduce PowerShell risks with Constrained Language Mode ... 36

3 Secure communication ... 48

3.1 Installing OpenSSH on Windows 10 and Server 2019 48

3.2 PowerShell remoting with SSH public key authentication 57

3.3 Creating a self-signed certificate ... 64

3.4 Remoting over HTTPS with a self-signed certificate 71

4 Just Enough Administration .. 81

4.1 JEA Session Configuration ... 81

4.2 Defining and assigning role functions 92

5 Audit PowerShell activities .. 98

5.1 Log commands in a transcription file 98

5.2 Scriptblock logging: Record commands in the event log 106

5.3 Issuing certificates for document encryption 112

5.4 Encrypt event logs and files with PowerShell and GPO 119

5.5 Audit PowerShell keys in the registry 127

6 Improve PowerShell code ... 134

6.1 Avoiding errors using strict mode ... 134

6.2 Checking code with ScriptAnalyzer 140

7 More security with ScriptRunner .. 145

7.1 PowerShell management solution .. 145

7.2 Five steps to safe automation and delegation 146

7.3 Additional information .. 151

Lax default configuration of PowerShell

8

1 PowerShell as a hacking tool:
Prevent abuse of scripts

PowerShell is a powerful tool for system administration and as such also a

perfect means for hackers. Due to the tight integration into the system,

attempts to simply block PowerShell provide a false impression of security.

The best protection is provided by PowerShell's own mechanisms.

PowerShell offers almost unlimited access to the resources of a Windows

computer and also can automate numerous applications such as Ex-

change. Users aren't limited to the many modules and cmdlets, but can

also integrate .NET classes, Windows APIs, and COM objects. These capa-

bilities are particularly dangerous in the hands of attackers.

Since many versions of With Windows Server, Microsoft avoids to activate

any roles and features on a freshly installed machine in order to minimize

the attack surface. On such a locked down system users must explicitly add

all required services.

Lax default configuration of PowerShell

9

1.1 Lax default configuration of PowerShell

However with PowerShell, the full range of functions is available from the

start on every Windows PC, if you put aside the "protection" by a restric-

tive execution policy. However, it is not recommended to leave this state

as it is.

You don't only have to fear malicious PowerShell experts who can exploit

all potentials of a script. In fact, even basic knowledge is sufficient to pen-

etrate systems with the help of various hacking tools.

Hacking tools for PowerShell

10

1.2 Hacking tools for PowerShell

Quite a number of them can be easily obtained as open source via Github.

These include the extensive script and module collections PowerSploit,

PowerShell Empire, Nishang or PowerUp.

You might assume that your computers are well protected by virus scan-

ners which detect and block these hacking tools. In fact, Windows De-

fender, for example, intervenes after the download and quarantines the

scripts.

Windows Defender prevents the download of PowerSploit

However, in contrast to binary files, scripts can be changed quite easily to

fool a signature based recognition. For example, you can copy Invoke-

Mimikatz from the browser window and paste it into an editor like Pow-

erShell_ISE to experiment with the code.

https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellEmpire/Empire
https://github.com/samratashok/nishang
https://github.com/PowerShellMafia/PowerSploit/blob/master/Privesc/PowerUp.ps1
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1

Hacking tools for PowerShell

11

This blog post by Carrie Roberts demonstrates how to outwit most virus

scanners by searching and replacing a few significant code snippets. At this

point, the technique discussed there may not be up to date any more, but

a bit of experimenting will probably reveal how virus scanners detect this

script. Otherwise, various AMSI-Bypasses can help you to overwhelm Win-

dows Defender.

https://www.blackhillsinfosec.com/bypass-anti-virus-run-mimikatz/
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell

General blocking of PowerShell

12

1.3 General blocking of PowerShell

To prevent such threats, many companies will take a radical measure and

disable PowerShell altogether. In centrally managed environments, black-

listing with AppLocker or the Software Restriction Policies is an effective

solution.

If you decide to use the software restriction, you create two new hash

rules and connect them to powershell.exe and powershell_ise.exe. For the

security level choose Not allowed. If you block the programs at the user

level, admins can be excluded.

Blocking powershell.exe with software restriction policies

This approach has two disadvantages. Firstly, it can be an obstacle to sys-

tem administration, because PowerShell has become an indispensable

General blocking of PowerShell

13

tool for most admins. For example, PowerShell logon scripts that are exe-

cuted in the security context of a user will no longer work.

Circumvention through alternative shells

14

1.4 Circumvention through alternative shells

More serious, however, is that PowerShell comprises more than just pow-

ershell.exe or power-shell_ise.exe and therefore cannot be permanently

blocked by denying access to these two files. Rather, it is a system compo-

nent (System.Management.Automation) that cannot be removed and can

be used by various runspaces.

Attackers could thus access PowerShell from any of their own programs.

It is therefore no surprise that already shells exist that can be integrated

into your own code or that can be executed directly. Among them are

p0wnedShell or PowerOPS.

In addition, numerous versions of PowerShell 6 and 7 are available for

download in ZIP format, which can be easily unpacked into a directory and

executed. Frequent previews of PowerShell 7 would keep admins busy,

because they always have to create new rules to cover all these versions.

And last but not least, another workaround is to compile PowerShell-

Scripts into executable files. They are also not dependent on pow-

ershell.exe.

https://www.secjuice.com/powershell-constrainted-language-mode-bypass-using-runspaces/
https://github.com/Cn33liz/p0wnedShell
https://github.com/fdiskyou/PowerOPS

Secure PowerShell with integrated mechanisms

15

1.5 Secure PowerShell with integrated
mechanisms

Instead of completely banishing PowerShell without achieving real secu-

rity, it makes more sense to use its security features. These were further

improved with version 5, so that you should update PCs to the latest ver-

sion of PowerShell.

It is also highly recommended to remove PowerShell 2.0, which is still pre-

installed as an optional feature and can be uninstalled in Windows 8.1 and

Server 2012 or higher. With this old version, all major restrictions for Pow-

erShell can be circumvented.

PowerShell 2.0 is an optional feature starting with Windows 8 and Server 2012 and is ena-
bled by default.

Secure PowerShell with integrated mechanisms

16

One of the key security mechanisms of Windows PowerShell is the Con-

strained Language Mode, which disables several dangerous features. This

language mode is particularly effective when used in conjunction with ap-

plication whitelisting.

When running PowerShell on remote machines Session Configurations

and Just Enough Administration can effectively limit the scope for users.

Selecting the allowed parameters of a cmdlet for JEA

Besides the means to prevent the abuse of PowerShell, there are also

functions to track down suspicious and unwanted activities. This includes

the recording of all executed commands in log files (Transcription) as well

as the newer Deep Scriptblock Logging.

Secure PowerShell with integrated mechanisms

17

The latter records all PowerShell actions in the event log. These entries

can be encrypted using Protected Event Logging and thus be protected

from prying eyes. Overall, PowerShell has a number of mechanisms that

make malicious use much more difficult.

The event viewer presents only the encrypted entries, it cannot decode them.

Lee Holmes has compiled a table on Microsofts PowerShell-Teamblog that

compares the security features of different programming languages and

shells.

It shows that PowerShell offers more options than the others to prevent

unwanted use. Of course, this does not provide an ultimate security, be-

cause resourceful minds always find ways to bypass the defense.

https://devblogs.microsoft.com/powershell/a-comparison-of-shell-and-scripting-language-security/

Secure PowerShell with integrated mechanisms

18

Event

Logging

Trans-

cription

Dynamic Evalu-

ation Logging

Encrypted

Logging

App

Whitelist-

ing

Bash No** No* No No Yes

CMD / BAT No No No No Yes

JScript No No No No Yes

LUA No No No No No

Perl No No No No No

PHP No No No No No

PowerShell Yes Yes Yes Yes Yes

Python No No No No No

Ruby No No No No No

sh No No No No No

T-SQL Yes Yes Yes No No

VBScript No No No No Yes

zsh No No No No No

Secure PowerShell with integrated mechanisms

19

Antimalware

Integration

Local Sand-

boxing

Remote

Sandboxing

Untrusted Input

Tracking

Bash No No Yes No

CMD / BAT No No No No

JScript Yes No No No

LUA No No Yes Yes

Perl No No Yes Yes

PHP No No Yes Yes

PowerShell Yes Yes Yes No

Python No No No No

Ruby No No No Yes

sh No No Yes No

T-SQL No No No No

VBScript Yes No No No

zsh No No Yes No

* Feature exists, but cannot be enforced via policies

**experimental

However, to benefit from these protections, admins must invest more ef-

fort than just simply blocking powershell.exe. As a benefit they can keep

PowerShell as a fully available system management tool which can even

be fine-tuned to delegate tasks to standard users.

Setting an execution policy

20

2 Restrict execution of scripts

2.1 Setting an execution policy

The execution of PowerShell scripts can be restricted by policies, by de-

fault it is blocked. While the execution policy set interactively by the admin

can be overridden by any user, configuration via GPO is more sustainable.

However, it still does not provide security against malicious users.

The main purpose of the execution policy is to protect users from acci-

dentally running untrusted scripts. The default setting on a freshly in-

stalled Windows is Restricted, so that no user can start PowerShell scripts,

not even an administrator.

2.1.1 Settings for the execution policy

Other possible values are:

 AllSigned: Only signed scripts from a trusted publisher are exe-

cuted, this also applies to locally created scripts.

 RemoteSigned: Scripts downloaded from the Internet must be

signed by a trusted publisher.

 Unrestricted: All scripts are executed. For unsigned scripts from

the Internet, you have to confirm each execution at the prompt.

 Bypass: No restrictions, warnings or prompts

 Undefined: Removes an assigned policy

2.1.2 Scope implicitly on LocalMachine

For example, if you want to change the default Restricted to RemoteSigned

and enter the command

Setting an execution policy

21

Set-ExecutionPolicy RemoteSigned

then it will fail if you have not opened the PowerShell session with admin-

istrative privileges.

Users without administrative rights cannot change the execution policy for the scope Local-
Machine.

The reason for this lies in the validity area for the execution policy. If the

scope is not explicitly specified, Set-ExecutionPolicy assumes LocalMa-

chine. This would change the setting for all users on this machine, hence

you need admin rights for this.

2.1.3 Overwrite PC-wide setting for a user

As is known from programming, a specific scope overrides a more general

one. If you define the execution policy for the current user, it overwrites

the one for the local machine. Therefore, any user can override a restric-

tive, system-wide setting as follows:

Setting an execution policy

22

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

The scope Process, which affects the current session, is even more specific.

The setting for this is not stored in the registry as usual, but in the envi-

ronment variable $env:PSExecutionPolicyPreference. It is discarded at the

end of the session.

2.1.4 Displaying policies for all scopes

The configuration of the execution policy for each scope can be displayed

with:

Get-ExecutionPolicy -List | ft -AutoSize

Scope of the PowerShell ExecutionPolicy

In addition to the LocalMachine, CurrentUser, and Process scopes de-

scribed above, two others appear in the output of the cmdlet, namely Ma-

chinePolicy and UserPolicy. The values for these can only be set by using

group policy.

Setting an execution policy

23

2.1.5 Defining execution policy via GPO

The setting responsible for configuring the execution policy can be found

for the computer and user configuration under Policies => Administrative

Templates => Windows Components => Windows PowerShell and is called

Turn on Script Execution.

GPO setting to configure the PowerShell execution policy

The execution policy configured in this way overrides the interactively de-

fined values and also prevents an administrator from changing them on

the command line. A bypass by invoking a new shell with

powershell.exe -ExecutionPolicy "Unrestricted"

Setting an execution policy

24

does not work either, whereas this technique can be used to override a

policy for LocalMachine. Furthermore, resetting to the Undefined value is

only possible by deactivating the GPO.

A group policy can thus be used to specify which criteria scripts must meet

in order to be allowed to run (this policy does not affect logon scripts, by

the way). This prevents untrustworthy scripts from accidentally causing

damage due to settings that are too lax.

2.1.6 No protection against malicious users

If a user decides to circumvent this policy, he simply copies the contents

of a script to the ISE and runs it there. RemoteSigned allows unsigned

scripts downloaded from the Internet to be started if you unblock the file

using Unblock-File.

Another bypass consists of encoding the script in Base64 and transferring

it to PowerShell.exe via the EncodedCommand parameter. To limit possi-

ble damage caused by such activities, it is recommended to use the Con-

strained Language Mode.

Signing PowerShell scripts

25

2.2 Signing PowerShell scripts

To ensure the authenticity of scripts, PowerShell is able to stamp them

with a signature. You need a signature if you want to set policies that allow

only trusted scripts to run. The required certificate can be issued by an AD-

based CA for internally developed scripts.

By signing a script, its developer confirms that it originates from him and

thus ensures that it has not been subsequently modified. Users who do

not want to execute PowerShell code from an unknown source for security

reasons can thus restrict the execution of scripts to certain manufacturers.

2.2.1 Restriction via execution policy, CLM, AppLocker

One mechanism for rejecting unsigned scripts is the execution policy.

When set to AllSigned, both local scripts and scripts downloaded from the

Internet must be signed. But this measure is not robust, because users can

copy the content of the script to the prompt or to the ISE and start it there.

The Constrained Language Mode (CLM) offers more protection, because

it only allows signed scripts to use the full functionality of PowerShell. Un-

signed scripts, on the other hand, are denied access to features that have

highly destructive potential.

Finally, solutions for whitelisting applications have the strongest effect in

blocking untrustworthy scripts. For example, AppLocker can be used to re-

strict the execution to scripts from certain vendors.

2.2.2 Assign permissions to certificate template

The first step is to make sure that the certificate template for code signing

is accessible to users who want to request a certificate for their scripts. To

Signing PowerShell scripts

26

do this, open the MMC-based tool Certification Authority (certsrv.msc)

and connect to the internal CA.

Open certificate templates from the MMC tool Certification Authority (certsrv.msc)

From the context menu of certificate templates, execute the Manage

command. This opens the snap-in for certificate templates.

Signing PowerShell scripts

27

Assigning rights to the template for code signing

There you select Properties from the context menu of Code signing and

switch to the Security tab. Next you add the group that should request

certificates based on this template and grant it the Read and Enroll per-

missions.

Signing PowerShell scripts

28

Open the dialog for activating certificate templates

After confirming this dialog, return to certsrv.msc. From the context menu

of certificate templates execute the command New => Certificate Tem-

plate to Issue. In the following dialog you select code signing and close it

with Ok.

Signing PowerShell scripts

29

Enabling the certificate template for code signing

2.2.3 Requesting a certificate for code signing

Now the developer of scripts can go ahead and request a certificate based

on this template. To do this, he starts mmc.exe and adds the snap-in cer-

tificates from the File menu. For users who do not have elevated privi-

leges, the tool automatically opens in the context of Current User.

Signing PowerShell scripts

30

Request a new code signing certificate

Here you right-click on Personal and then select All Tasks => Request New

Certificate. This starts a wizard where you select the certificate enrollment

policy in the first dialog (usually the default one for AD).

Then you select the template Code Signing, open its details and click on

Properties. In the dialog that appears, enter the necessary data under Sub-

ject and switch to the Private Key tab to check the option Make private key

exportable.

Signing PowerShell scripts

31

Select the code signing template and make the private key exportable

After confirming this dialog, back in the main window click on Register.

Now the result of the operation is displayed and you can complete the

process with Enroll.

Signing PowerShell scripts

32

Successful completion of the certificate request

2.2.4 Signing a script

The certificate can now be found in the user's local store under Personal

=> Certificates. This can be displayed in PowerShell using the correspond-

ing provider:

Get-ChildItem Cert:\CurrentUser\My -CodeSigningCert

You can take advantage of this command used to specify the certificate

when signing the script with Set-AuthenticodeSignature:

Set-AuthenticodeSignature myScript.ps1 `

(dir Cert:\CurrentUser\My -CodeSigningCert)

Signing PowerShell scripts

33

Signing a script by using the Set-AuthenticodeSignature cmdlet

PowerShell will insert the signature in Base64 format as a separate block

at the end of the script.

Signing PowerShell scripts

34

PowerShell script after signing with a certificate

When the script is started for the first time on a computer after signing,

the user must confirm the execution if the publisher is not considered to

be trustworthy.

If you select the option Always run, this prompt will not appear in the fu-

ture because the certificate is saved in the store. In this respect, Pow-

erShell behaves just like a web browser or RDP client.

2.2.5 Marking the signature with a time stamp

After signing a script, PowerShell will refuse to execute it if you make even

the slightest change to it. The only remedy is to re-sign the script.

Signing PowerShell scripts

35

The same applies when the certificate expires. In this case the script can

also no longer be used. But you can prevent this by using a timestamp

server when signing.

Signature with a time stamp

This example uses the free service of Globalsign:

Set-AuthenticodeSignature myScript.ps1 `

(gci Cert:\CurrentUser\My -CodeSigningCert)`

-TimestampServer http://timestamp.glob-

alsign.com/scripts/timstamp.dll `

-HashAlgorithm "SHA256"

This proves that the certificate was valid at the time of signing.

Reduce PowerShell risks with Constrained Language Mode

36

2.3 Reduce PowerShell risks with Constrained
Language Mode

PowerShell is a powerful tool that can control almost all components of

Windows and applications such like Exchange. It can therefore cause great

damage in the hands of attackers. The constrained language mode blocks

dangerous features and thus prevents their misuse.

By default, PowerShell operates in Full Language Mode, where all func-

tions are available. This includes access to all language elements, cmdlets

and modules, but also to the file system and the network.

2.3.1 Blocked Functions

The ability to instantiate COM and .NET objects or to generate new data

types (with add-type) that have been defined in other languages is partic-

ularly dangerous capability of PowerShell.

The constrained language mode blocks these features (except access to

permitted .NET classes). It also prevents the declaration of classes, usage

of configuration management with DSC, and XAML-based workflows (see

Microsoft Docs for a complete list).

2.3.2 Enabling constrained language mode

A simple way to switch to Constrained Language Mode is to set the re-

sponsible variable to the desired value:

$ExecutionContext.SessionState.LanguageMode = `

"ConstrainedLanguage"

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes?view=powershell-6#constrained-language-constrained-language

Reduce PowerShell risks with Constrained Language Mode

37

Displaying and changing the Language Mode via the variable $ExecutionContext.Session-
State.LanguageMode

It is obvious that setting this variable does not provide any real protection.

You may not be able to change it back to FullLanguage in the same session,

but a new PowerShell session will again offer the full range of languages

features.

2.3.3 Switching to restricted mode with environment variable

Less easy to overcome is the (undocumented) system environment varia-

ble __PSLockDownPolicy, if you set it to the value 4. As a result, Pow-

erShell, regardless of whether it's just a command line or the ISE, will start

in restricted mode.

Reduce PowerShell risks with Constrained Language Mode

38

Setting environment variable __PSLockDownPolicy interactively

In centrally managed environments you will probably set the system vari-

able using group policies preferences.

Reduce PowerShell risks with Constrained Language Mode

39

Setting environment variable __PSLockDownPolicy via GPO

A disadvantage of this procedure is that it always affects all users of a com-

puter, including administrators. However, administrators may temporarily

remove the environment variable until the GPO becomes effective again.

But this is quite cumbersome and definitely not a good solution.

Furthermore, when used this way, it is not a security feature supported by

Microsoft and it is relatively easy to circumvent, as shown by Matt Graeber

in this Tweet. Nevertheless, it might thwart most opportunist attacks.

A strict enforcement of the constrained language mode on a local com-

puter thus requires the use of a software execution restriction such as Ap-

pLocker or Windows Defender Application Control. In a remote session,

however, it can be enforced via a Session Configuration.

https://twitter.com/mattifestation/status/921510606422786048
https://twitter.com/mattifestation/status/921510606422786048

Reduce PowerShell risks with Constrained Language Mode

40

2.3.4 Automatic detection of an execution constraint

Since version 5, based on script rules PowerShell recognizes automatically

whether it should switch to constrained language mode. To do so, it cre-

ates a module and a script (with a name following the pattern __PSSCRIPT-

POLICYTEST_LQU1DAME.3DD.PS1) under $env:temp and tries to execute

them. If AppLocker or another tool blocks this attempt, PowerShell will

start in restricted language mode.

The event log shows whether the execution of the test scripts was successful or if it has
failed.

The effect of this mechanism can easily be seen in AppLocker's event log.

AppLocker logs the creation and execution of these test files with the ID

Reduce PowerShell risks with Constrained Language Mode

41

8005 (success) or 8007 (execution blocked) under Applications and Ser-

vices Log => Microsoft => Windows => AppLocker => MSI und Script.

2.3.5 Configuring AppLocker

If you use AppLocker for this task, you have to create a new GPO and then

edit it in the GPO editor. There you navigate to Computer Configuration =>

Policies => Windows Settings => Security Settings => Application Control

Policies => AppLocker and follow the link Configure rule enforcement. In

the dialog that appears, you then activate the option Script rules.

Enabling rule enforcement for scripts in AppLocker

Reduce PowerShell risks with Constrained Language Mode

42

In order for AppLocker to block applications on the target systems, the

service named Application Identity must be running. It is not active by de-

fault and does not start up when the system is booting. You can change it

to start type Automatic either interactively using the MMC snapin services

or from the command line:

sc config AppIDSvc start=auto

Setting the start type for the Application Identity service to automatic

For a central management of this Windows service, the use of Group Pol-

icy is recommended.

Reduce PowerShell risks with Constrained Language Mode

43

2.3.6 Defining rules

Finally it is necessary to define rules that block the start of scripts in the

Temp directory. To do this, simply switch to Script Rules below AppLocker

and select Create Default Rules from the context menu.

Creating default rules for scripts in AppLocker

They allow standard users to execute scripts only from the Windows or

Program Files directories, i.e. in locations where users cannot store any

files themselves. Administrators are explicitly exempted from this re-

striction by a separate rule.

Reduce PowerShell risks with Constrained Language Mode

44

2.3.7 Activating Constrained language mode via SRP

AppLocker is an exclusive feature of the Enterprise and Education editions.

Therefore, the Pro edition can use the Software Restriction Policies (SRP)

instead.

Again, you just have to ensure that the two test scripts cannot be executed

in the %temp% directory. To do this, create a GPO and open it in the editor

and navigate to Computer Configuration => Policies => Windows Settings

=> Security Settings => Software Restriction Policies.

Enter file extensions for PowerShell in the Software Restriction Policies.

Here you create a new policy and in the first step you add the extensions

ps1 and psm1 to the list of the designated file types.

Reduce PowerShell risks with Constrained Language Mode

45

Creating a New Path Rule for the software restriction

Then you create a New Path Rule under Additional Rules. Here you enter

%temp% as the Path and leave the setting for Security level set to Disal-

lowed.

Reduce PowerShell risks with Constrained Language Mode

46

Defining the path rule for the Temp directory

2.3.8 Prevent PowerShell 2.0 circumvention

Regardless of whether you choose the environment variable, AppLocker,

or Software Restriction Policies, you will need to remove PowerShell 2.0

from the machines where you want to enforce the constrained language

mode.

Reduce PowerShell risks with Constrained Language Mode

47

PowerShell 2.0 is an optional feature starting with Windows 8 and Server 2012 and is ena-
bled by default.

It has only been introduced with PowerShell 3.0 and can easily be by-

passed by a hacker switching to an older version. All he needs to do is to

enter the command:

powershell.exe -version 2.0

You can check whether this old version is still activated on a PC by enter-

ing:

Get-WindowsOptionalFeature -Online `

-FeatureName MicrosoftWindowsPowerShellV2

However, you can only uninstall it on Windows 8 and Server 2012 or later,

where PowerShell 2.0 is an optional feature.

Installing OpenSSH on Windows 10 and Server 2019

48

3 Secure communication

3.1 Installing OpenSSH on Windows 10 and
Server 2019

Windows Server 2019 includes OpenSSH as an optional feature for the first

time, thus simplifying installation and configuration. However, errors in

the earlier builds of the operating system prevent a successful activation

of the SSH server. In WSUS environments OpenSSH has the same problems

as RSAT.

The porting of OpenSSH to Windows makes it easier to manage heteroge-

neous environments. Linux computers can be remotely administered via

SSH from Windows, and thanks to the new OpenSSH server, the reverse is

now also possible. In addition, PowerShell Core supports remoting via SSH,

even between different OSes.

3.1.1 OpenSSH server not included in the operating system

One would expect that a system component with such strategic im-

portance is delivered as part of the operating system and can be installed

as a feature via the Server Manager or PowerShell.

However, Microsoft has decided to provide OpenSSH as an optional fea-

ture (also called "Feature on Demand"). This unifies the installation be-

tween client and server OS. The following description therefore also ap-

plies to Windows 10 from Release 1803 onwards.

Installing OpenSSH on Windows 10 and Server 2019

49

3.1.2 Installation via GUI

To install OpenSSH server, start Settings, then go to Apps => Apps and Fea-

tures => Manage Optional Features. As you can see from the list of in-

stalled components, the SSH client is already installed by default. The

server, on the other hand, you need to add using the Add Features option.

Installing the OpenSSH Server via the Settings App

In the list above, select OpenSSH server and click on the Install button that

appears. Windows will now download the required files over the Internet.

If an error occurs, you will not receive a message from the Settings App,

but it will simply jump back to the list of features.

Installing OpenSSH on Windows 10 and Server 2019

50

3.1.3 Adding an OpenSSH-Server via PowerShell

In contrast, PowerShell provides more transparency. To find the exact

name of the required package, you enter the following command:

Get-WindowsCapability -Online | ? name -like *OpenSSH.Server*

Finally you add the name shown to Add-WindowsCapability.

Adding an OpenSSH Server via PowerShell

Alternatively, you can pass on the output via a pipe:

Get-WindowsCapability -Online |

where name -like *OpenSSH.Server* |

Add-WindowsCapability -Online

3.1.4 Faulty Builds

There are at least two reasons why you may encounter problems here. If

the build of the system is older than 17763.194, then you will see the error

Add-WindowsCapability failed. Error code = 0x800f0950

Installing OpenSSH on Windows 10 and Server 2019

51

The installation of OpenSSH Server fails on earlier builds of Windows Server 2019.

In this case you need a current cumulative update to fix the problem (it is

documented here: bit.ly/3kCi0Pv).

3.1.5 Problems with WSUS

A further hurdle arises if the server, which is usually the case, is updated

via WSUS. Microsoft delivers features on demand bypassing WSUS, so you

don't get them via the internal update server.

Therefore, it is not unlikely that PowerShell will present the following error

here:

Error with "Add-WindowsCapability". Error code: 0x8024002e

https://bit.ly/3kCi0Pv

Installing OpenSSH on Windows 10 and Server 2019

52

Error while installing OpenSSH as an optional feature in WSUS environments

In the eventlog you will then find an entry with ID 1001 stating that the

OpenSSH-Server-Package is not available.

Eventlog entry when adding OpenSSH server as optional component in a WSUS environment

As with the RSAT, a remedy is to allow Windows to load optional features

directly from Microsoft Update via group policy. The Setting is called Spec-

ify settings for optional component installation and component repair and

Installing OpenSSH on Windows 10 and Server 2019

53

can be found under Computer Configuration => Policies => Administrative

Templates => System.

Allowing WSUS clients to access Windows Update using Group Policy.

At the same time, you must ensure that neither the setting Do not connect

to Windows Update Internet locations nor Remove access to use all Win-

dows Update features is in effect.

The latter may have been enabled to prevent users from manually down-

loading feature updates. This primarily affects Windows 10 rather than the

server.

Installing OpenSSH on Windows 10 and Server 2019

54

3.1.6 Activating SSH-Server

OpenSSH Server installs two services which are not yet running and whose

startup type is manual and disabled. If you want to use SSH regularly, you

will want to start the services automatically.

Displaying the Startup Type and Status of SSH Services with PowerShell

This can be configured via the GUI services, but the fastest way is using

PowerShell:

Set-Service sshd -StartupType Automatic

Set-Service ssh-agent -StartupType Automatic

To put the SSH server into operation immediately, you must also start the

two services manually:

Start-Service sshd

Start-Service ssh-agent

This command

Get-Service -Name *ssh* |

select DisplayName, Status, StartType

is used to check whether the settings for the two services match and

whether they were started successfully. Now you can check if the firewall

rule for incoming SSH connections has been properly activated:

Installing OpenSSH on Windows 10 and Server 2019

55

Get-NetFirewallRule -Name *SSH*

Checking Firewall-Rule for SSH

3.1.7 Testing the connection

If this condition is also fulfilled, then the connection test is good to go.

From a Windows 10 PC or a Linux computer you can connect to the freshly

configured server:

ssh <Name-of-Server>

This will direct you at the old command prompt, but you can also start

PowerShell there.

Establish connection to freshly installed SSH server

Installing OpenSSH on Windows 10 and Server 2019

56

Finally, you should consider whether you would like to use public key au-

thentication for security reasons. This also increases user comfort because

you no longer have to enter a password.

PowerShell remoting with SSH public key authentication

57

3.2 PowerShell remoting with SSH public key
authentication

One of the advantages of PowerShell remoting via SSH over WinRM-based

remoting is that you can work with public key authentication. This makes

remote management of Windows machines that are not members of an

Active Directory domain convenient and secure.

If you work with WinRM in an environment without Active Directory,

things get quite messy and inconvenient if security matters to you. You

have to switch from the default HTTP to the HTTPS protocol, deal with

SSL/TLS certificates and with trusted hosts.

Remoting over SSH, which has been introduced with PowerShell 6, doesn't

require public key authentication to work. Instead, username and pass-

word are also accepted.

The main downside is that you then have to enter your Windows password

every time you connect to a remote machine. That might be okay for in-

teractive sessions with Enter-PSsession, but if you want to run your scripts

remotely via Invoke-Command, it could be a problem.

Moreover, public key authentication improves security because it works

conveniently without using passwords. Thus, it makes sense to invest a

little more time and configure PowerShell remoting for public key authen-

tication.

3.2.1 Local configuration

The first thing you have to do is create the private and the public key,

which you can do by simply running the ssh-keygen command. By default,

PowerShell remoting with SSH public key authentication

58

the command saves the key pair in the .ssh folder in your user profile.

id_rsa is the private key, and id_rsa.pub is the public key.

If you want to work without a passphrase, you can just hit Enter twice.

However, I recommend using a passphrase because if someone gets ac-

cess to your private key, this will compromise all your remote machines.

Thanks to the ssh-agent, you don't have to enter the passphrase whenever

you connect to a remote machine. The ssh-agent runs as a service and

securely stores your private key. At a PowerShell console, you can start the

ssh-agent this way:

Start-Service ssh-agent

If you want the service to start automatically after a restart, you can use

this command:

Set-Service ssh-agent -StartupType Automatic

To add your private key to the ssh-agent, you have to enter this command:

ssh-add <path to private key>

You will have to enter your passphrase here once. After that you can re-

move your private key from the .ssh folder and store it in a safer place.

PowerShell remoting with SSH public key authentication

59

Creating a key pair, adding the private key to the ssh agent and removing it again

If you later want to remove the private key from the ssh-agent, you can do

it with this command:

ssh-add -d ida_rsa

Note that this requires that you provide the SSH key. In case you have lost

your private key, you can remove all private keys from the ssh-agent:

ssh-add -D

3.2.2 Remote configuration

Next, you have to copy the contents of the public key file id_rsa.pub to the

remote host. Just paste it to the authorized_keys file in C:\Users\<your

user name\.ssh\.

PowerShell remoting with SSH public key authentication

60

The public key for SSH (contents of id_rsa.pub)

By default, public key authentication is enabled in OpenSSH. However, I

recommend disabling password authentication for security reasons. If an

attacker compromises your Windows password, he can connect to the re-

mote host even without your private key and passphrase.

Disabling password authentication for SSH

PowerShell remoting with SSH public key authentication

61

To disable password authentication, launch Notepad with admin rights

and then open sshd_config in C:\ProgramData\ssh\. Add

"PasswordAuthentication no"

to the file and save it. You have to restart the ssh service to apply the

changes. You can do this at a PowerShell console with admin rights:

Restart-Service sshd

3.2.3 Connecting with public key authentication

You are now back onto your local host and ready to test your connection.

At a PowerShell 6 or 7 console, simply enter this command:

Enter-PSession -HostName <remote host> `

-UserName <user name on the remote computer>

The HostName parameter ensures PowerShell will connect via SSH instead

of WinRM. Note that your user name on the remote computer doesn't

have to be same if you use the UserName parameter. If you omit this pa-

rameter, PowerShell will take your current logon name on the local com-

puter.

Notice you have to enter neither the Windows password nor the pass-

phrase for the private key.

Invoke-Command works in just the same way:

Invoke-Command -HostName <remote hosts> `

-UserName <user name on the remote computer> `

-ScriptBlock {get-process}

PowerShell remoting with SSH public key authentication

62

PowerShell remoting via SSH transport and public key authentication

You can also connect with any SSH client. OpenSSH comes with a simple

SSH client you can launch from the command prompt:

ssh <user name on the remote computer>@<remote host>

Just for the sake of completeness, if you didn't store your private key in

the ssh-agent, you can still work with public key authentication. If the pri-

vate key is located in the .ssh folder of your user profile, OpenSSH will au-

tomatically find the key. If you stored the key in another location, you have

to pass the private key.

With the ssh client you can use the -i parameter:

ssh -i <path to private key>id_rsa <user name on the remote

host>@<remote host>

Enter-PSsession and Invoke-Command have the -IdentityFilePath parame-

ter for this purpose:

Enter-PSession -HostName <remote host> `

-UserName <user name on the remote host> `

-IdentityFilePath <path to private key>id_rsa

As mentioned above, I don't recommend working this way because it re-

quires storing your private key in clear text on your local computer. Even

PowerShell remoting with SSH public key authentication

63

if you use a passphrase, it is more secure to work with the ssh-agent be-

cause you are safe from keyloggers and other password stealing methods.

Creating a self-signed certificate

64

3.3 Creating a self-signed certificate

While back in Windows XP tools like makecert.exe were needed to issue

self-signed certificates, since Windows 8 and Server 2012 PowerShell can

take over this task with its cmdlet New-SelfSignedCertificate. The certifi-

cates can be used for client and server authentication or for code signing.

Self-signed certificates are typically used in lab or other small environ-

ments where you don't want to set up a Windows domain or an independ-

ent certificate authority. The issuer and user are then usually the same

person or belong to a small group.

3.3.1 Creating a certificate with default values

To issue a SSL certificate, the cmdlet New-SelfSignedCertificate requires

only very few parameters. A basic command in an administrative session

might look like this:

New-SelfSignedCertificate -DnsName lab.contoso.de `

-CertStoreLocation Cert:\LocalMachine\My

Creating a self-signed certificate

65

Creating a self-signed SSL certificate with New-SelfSignedCertificate based on the default
settings.

This command creates a new certificate under My in the store for the local

machine, with the subject set to "lab.contoso.de".

Using the command

dir Cert:\LocalMachine\my\<thumbprint-of-certificate> |

fl -Property *

you can see that the new certificate has, among other things, the following

default properties:

 EnhancedKeyUsageList: {client authentication(1.3.6.1.5.5.7.3.2),

server authentication (1.3.6.1.5.5.7.3.1)}

 NotAfter: 22.03.2020 18:52:22

 HasPrivateKey: True

 Issuer: CN=lab.contoso.de

 Subject: CN=lab.contoso.de

Creating a self-signed certificate

66

If the certificate is generated with the default values, it will be suitable for client and server
authentication.

Without specifying a type in the call to New-SelfSignedCertificate, the cer-

tificate is suitable for client and server authentication. Furthermore, it is

valid for 1 year and has a private key which is also exportable as shown by

certutil.

Creating a self-signed certificate

67

Displaying the properties of the new certificate in the MMC certificate snap-in.

The cmdlet issues a SAN certificate when you use the DnsName parame-

ter. There you specify the subject alternative names as a comma-sepa-

rated list. The first of them also serves as the subject as well as the issuer

if you do not use a certificate to sign the new certificate by using the signer

parameter.

You may also specify wildcards following the pattern

New-SelfSignedCertificate -DnsName `

lab.contoso.de, *.contoso.de -cert Cert:\LocalMachine\My

for creating wildcard certificates.

Creating a self-signed certificate

68

3.3.2 Extended options in Windows 10 and Server 2016

You can override most of the defaults for new certificates with your own

parameters for New-SelfSignedCertificate (bit.ly/37c1Plf), but only from

Windows 10 and Server 2016 on. Before that, the cmdlet only accepted

the parameters DnsName, CloneCert und CertStoreLocation.

The following command allows you to extend the validity beyond one year

by specifying a date:

New-SelfSignedCertificate -DnsName lab.contoso.de `

-CertStoreLocation Cert:\LocalMachine\My `

-NotAfter (Get-Date).AddYears(2)

This example sets the validity to 2 years.

Other use cases besides client and server authentication can also be de-

fined for the certificate. In addition to the default value SSLServerAuthen-

tication, the Type parameter also accepts these values:

 CodeSigningCert

 DocumentEncryptionCert

 DocumentEncryptionCertLegacyCsp

On top of that there is Custom, which activates all purposes for a certifi-

cate. They can be individually deselected again later using the MMC cer-

tificate snap-in.

https://bit.ly/37c1Plf

Creating a self-signed certificate

69

If you select 'Custom' as the type, you generate a certificate with all purposes.

If you do not want the private key to be exportable, you can achieve this

using the parameter:

-KeyExportPolicy NonExportable

3.3.3 Exporting the certificate

If you want to export the certificate to a PFX file in order to use it on an IIS

web server, then Export-PfxCertificate serves this purpose. However, it re-

quires that you secure the target file, either with a password or with access

rights that you set using the ProtectTo parameter.

If you use a password, you first turn it into a secure string:

Creating a self-signed certificate

70

$CertPW = ConvertTo-SecureString -String "secret" `

-Force -AsPlainText

It is then passed to the parameter Password when calling Export-PfxCer-

tificate:

Export-PfxCertificate -Password $CertPW `

-Cert cert:\LocalMachine\My\<Thumbprint> myCert.pfx

You specify the certificate via the path in the store and its thumbprint.

Exporting self-signed certificate to a PFX file

If you use a self-signed certificate on a server, it is not considered trust-

worthy by the clients. To bypass the corresponding warning, you can im-

port it into the trusted root certification authorities on the clients, either

manually or via GPO.

To do this, export the certificate without a private key in DER-encoded for-

mat:

Export-Certificate -FilePath MyCert.cer `

-Cert Cert:\LocalMachine\My\<Thumbprint>

In Windows the name extension for such an export file is usually ".cer".

Remoting over HTTPS with a self-signed certificate

71

3.4 Remoting over HTTPS with a self-signed
certificate

WinRM encrypts data by default and is therefore secure even if you only

work with HTTP (which is the standard configuration). Especially in

workgroups, you can achieve additional security by using HTTPS, whereby

a self-signed certificate should suffice in most cases.

Indeed, Microsoft’s documentation for Invoke-Command (bit.ly/3fVd2d1)

confirms that WS-Management encrypts all transmitted PowerShell data.

Unfortunately, if not configured properly, PowerShell Remoting is insecure

and it in some cases you need to change the default configuration.

To check how your machines are configured, you can run this command:

winrm get winrm/config

https://bit.ly/3fVd2d1

Remoting over HTTPS with a self-signed certificate

72

Checking WinRM configuration

You can also view the configuration in PowerShell:

dir WSMan:\localhost\Service | ? Name -eq AllowUnencrypted

Query current WS-Management configuration using PowerShell

Remoting over HTTPS with a self-signed certificate

73

For the client, the corresponding command is

dir WSMan:\localhost\Client | ? Name -eq AllowUnencrypted

3.4.1 Additional protection for workgroup environments

The second and, in my view, bigger problem is that, if you are working with

machines that are not in an Active Directory domain, you don’t have any

trust relationship with the remote computers. You are then dealing only

with symmetric encryption, so man-in-the-middle attacks are theoretically

possible because the key has to be transferred first.

There you have to add the remote machines that are not in an Active Di-

rectory domain to your TrustedHosts list on the client. However, you don’t

improve security just by defining IP addresses or computer names as trust-

worthy. This is just an extra hurdle that Microsoft added so you know that

you are about to do something risky.

This is where PowerShell Remoting via SSL comes in. For one, HTTPS traffic

is always encrypted. Thus, you can always automate your tasks remotely,

free of worry. And, because SSL uses asymmetric encryption and certifi-

cates, you can be sure that you are securely and directly connected to your

remote machine and not to the computer of an attacker that intercepts

and relays your traffic.

On the downside, configuring PowerShell Remoting for use with SSL is a

bit more difficult than just running Enable-PSRemoting. The main problem

is that you need an SSL certificate. If you just want to manage some stand-

alone servers or workstations, you probably don’t like to acquire a pub-

licly-signed certificate and want to work with a self-signed certificate in-

stead.

Remoting over HTTPS with a self-signed certificate

74

However, you will now see that enabling SSL for WinRM on the client and

on the server is not so difficult (although it is not as straightforward as with

SSH), and you can do it all with PowerShell’s built-in cmdlets. You don’t

even need the notorious winrm Windows command-line tool.

3.4.2 Enabling HTTPS on the remote computer

The first thing we need to do is create an SSL certificate. If you have a

publicly-signed certificate, things are easier and you can use

Set-WSManQuickConfig -UseSSL

As mentioned above, since the release of PowerShell 4, we don’t require

third-party tools for issuing a self-signed certificate.

The New-SelfSignedCertificate cmdlet is all we need:

$Cert = New-SelfSignedCertificate -DnsName "myHost" `

-CertstoreLocation Cert:\LocalMachine\My

It is important to pass the name of the computer that you want to manage

remotely to the -DnsName parameter. If the computer has a DNS name,

you should use the fully qualified domain name (FQDN).

Issue self-signed certificate, export it, and generate HTTPS listener for PowerShell remoting.

Remoting over HTTPS with a self-signed certificate

75

If you want to, you can verify that the certificate has been stored correctly

using the certificate add-in of the Microsoft Management Console (MMC).

Type mmc on the Start screen and add the Certificates add-in for a com-

puter account and the local computer. The certificate should be in the Per-

sonal\Certificates folder.

Certificate in MMC on the remote computer

We now have to export the certificate to a file because we will have to

import it later into our local machine. You can do this with the MMC add-

in, but we’ll do it in PowerShell:

Export-Certificate -Cert $Cert -FilePath C:\temp\cert

The file name doesn’t matter here.

We need the certificate to start the WS-Management HTTPS listener. But

we should first enable PowerShell Remoting on the host:

Enable-PSRemoting -SkipNetworkProfileCheck -Force

The -SkipNetworkProfileCheck switch ensures that PowerShell won’t com-

plain if your network connection type is set to Public.

Remoting over HTTPS with a self-signed certificate

76

Enable-PSRemoting also starts a WS-Management listener, but only for

HTTP. If you want to, you can verify this by reading the contents of the

WSMan drive:

dir wsman:\localhost\listener

Listing WSMan listeners

To ensure that nobody uses HTTP to connect to the computer, you can

remove the HTTP listener this way:

Get-ChildItem WSMan:\Localhost\listener |

Where -Property Keys -eq "Transport=HTTP" |

Remove-Item -Recurse

This command removes all WSMan listeners:

Remove-Item -Path WSMan:\Localhost\listener\listener* `

-Recurse

Next, we add our WSMan HTTPS listener:

New-Item -Path WSMan:\LocalHost\Listener -Transport HTTPS

-Address * -CertificateThumbPrint $Cert.Thumbprint -Force

Remoting over HTTPS with a self-signed certificate

77

We are using the $Cert variable that we defined before to read the Thumb-

print, which allows the New-Item cmdlet to locate the certificate in our

certificates store.

The last thing we have to do is configure the firewall on the host because

the Enable-PSRemoting cmdlet only added rules for HTTP:

New-NetFirewallRule -LocalPort 5986 -Protocol TCP `

-DisplayName "Windows Remote Management (HTTPS-In)" `

-Name "Windows Remote Management (HTTPS-In)" -Profile Any

Create new firewall rule for PowerShell remoting over HTTPS

Notice here that we allow inbound traffic on port 5986. WinRM 1.1 (cur-

rent version is 3.0) used the common HTTPS port 443. You can still use this

port if the host is behind a gateway firewall that blocks port 5986:

Set-Item WSMan:\localhost\Service\EnableCompatibility-

HttpsListener -Value true

Remoting over HTTPS with a self-signed certificate

78

Of course, you then have to open port 443 in the Windows Firewall. Note

that this command won’t work if the network connection type on this ma-

chine is set to Public. In this case, you have to change the connection type

to private:

Set-NetConnectionProfile -NetworkCategory Private

For security reasons, you might want to disable the firewall rule for HTTP

that Enable-PSRemoting added:

Disable-NetFirewallRule -DisplayName "Windows Remote Man-

agement (HTTP-In)"

Our remote machine is now ready for PowerShell Remoting via HTTPS, and

we can configure our local computer.

3.4.3 Activate HTTPS on the local computer

Things are a bit easier here. First, you have to copy the certificate file to

where we exported our certificate. You can then import the certificate

with this command:

Import-Certificate -Filepath "C:\temp\cert" `

-CertStoreLocation "Cert:\LocalMachine\Root"

Note that we need to store the certificate in the Trusted Root Certification

Authorities folder here and not in the Personal folder as we did on the

remote computer. Your computer trusts all machines that can prove their

authenticity with the help of their private keys (stored on the host) and

the certificates stored here.

Remoting over HTTPS with a self-signed certificate

79

Certificate in MMC on the local computer

By the way, this is why we don’t have to add the remote machine to the

TrustedHosts list. In contrast to PowerShell Remoting over HTTP, we can

be sure that the remote machine is the one it claims to be. This is the main

point of using HTTPS instead of HTTP.

We are now ready to enter a PowerShell session on the remote machine

via HTTPS:

Enter-PSSession -ComputerName myHost `

-UseSSL -Credential (Get-Credential)

The crucial parameter here is -UseSSL. Of course, we still have to authen-

ticate on the remote machine with an administrator account.

You might receive this error message:

The SSL certificate is signed by an unknown certificate

authority.

Remoting over HTTPS with a self-signed certificate

80

In that case you can just add the the -SkipCACheck parameter.

The Invoke-Command cmdlet also supports the -UseSSL parameter:

Invoke-Command -ComputerName myHost -UseSSL `

-ScriptBlock {Get-Process} -Credential (Get-Credential)

3.4.4 Conclusion

HTTPS doesn’t just add another encryption layer; its main purpose is to

verify the authenticity of the remote machine, thereby preventing man-

in-the-middle attacks. Thus, you only need HTTPS if you do PowerShell Re-

moting through an insecure territory. Inside your local network, with trust

relationships between Active Directory domain members, WSMan over

HTTP is secure enough.

JEA Session Configuration

81

4 Just Enough Administration

4.1 JEA Session Configuration

If users want to connect to a remote PC via PowerShell without adminis-

trative privileges, they fail because of insufficient rights. This limitation can

be eliminated with the help of session configurations. Thereby it is not

necessary to grant standard users access to all functions of PowerShell.

The ability for remote management is one of the strengths of PowerShell.

It is not limited to interactive sessions in which commands are executed

on the remote computer. Rather, it also allows you to run scripts to help

automate tasks.

4.1.1 Session Configurations as a component of JEA

By default, this option is not available to standard users and their requests

will be rejected by the target computer. However, if you want to delegate

tasks to employees without administrative privileges, you have to relax

this strict rule.

JEA Session Configuration

82

By default, users without administrative rights cannot establish a remote session with Pow-
erShell.

A session configuration serves this purpose. It determines who is allowed

to establish a session on a computer. This function is also performed by

the Just Enough Administration (JEA). JEA defines what the users are al-

lowed to do there via additional role capabilities files.

In many cases, however, you do not have to deal with the complete JEA,

but you can define the access rights and the available language elements

directly via a session configuration.

4.1.2 Restrictive standard configurations

Session definitions always control PowerShell access to a computer, even

if you have not created one of your own. By default, there are three Ses-

sion Configurations on each Windows computer, namely microsoft.pow-

ershell, microsoft.powershell.workflow and microsoft.windows.server-

managerworkflows.

JEA Session Configuration

83

If you create a new session, such as with Enter-PSSession, and do not spec-

ify a particular configuration, then microsoft.powershell takes effect by de-

fault. As you can see from the command

Get-PSSessionConfiguration

on the target computer, this session configuration is reserved for admin-

istrators and members of the local group Remote Administration Users.

Displaying the existing session configurations and their authorizations with Get-PSSession-
Configuration

4.1.3 Defining your own configurations

Theoretically, you could now simply change the security settings of this

configuration to give access for selected standard users. But you should

refrain from that and maintain a working configuration for admins.

JEA Session Configuration

84

The simplest way to create a new session configuration is to execute a

command according to the following pattern on the target computer (also

called an endpoint in JEA jargon):

Register-PSSessionConfiguration -Name HelpDesk

Create a new session configuration with Register-PSSessionConfiguration

Not much is gained with this command, because the new configuration is

only a copy of microsoft.powershell and does not allow users other than

admins to access the computer. Hence, you should define the permissions

when you create the configuration.

4.1.4 Defining permissions

This is done using the parameter SecurityDescriptorSddl, but it needs the

permissions in the syntax of the Security Descriptor Definition Language

(bit.ly/33Xti8f). If you do not need to create Session Configurations too

often, you can save yourself this effort and use the parameter ShowSecu-

rityDescriptorUI instead:

https://bit.ly/33Xti8f

JEA Session Configuration

85

Register-PSSessionConfiguration -Name HelpDesk `

-ShowSecurityDescriptorUI

This opens the dialog you already know from managing file permissions.

Managing Permissions for a Session Configuration

By adding local or AD groups and assigning them the desired privileges,

you determine who can use this configuration. To run a remote session,

the Execute permission is sufficient here.

4.1.5 Defining RunsAs users

So far you have already configured who is allowed to start a session on this

remote computer using the new configuration. In addition, you can also

specify under which user ID this should happen by passing the respective

ID to the RunAsCredential parameter:

Register-PSSessionConfiguration -Name HelpDesk `

-RunAsCredential contoso\FLee

JEA Session Configuration

86

Specify the account under which the remote session should run if it was started from session
configuration.

PowerShell then prompts for the password and stores it in the configura-

tion. If a user then connects to the target PC via a session configuration,

he or she will automatically work there in the context of this account. If

you do not use this option, the connection is made under the locally

logged on user.

4.1.6 Forcing restrictions for sessions

Working under a different account might give the users different permis-

sions in the file system, but functional restrictions imposed by a session

configuration apply regardless of the account used. The RunsAs account

therefore does not require any permissions in the Security Descriptor of

the session configuration.

The Register-PSSessionConfiguration cmdlet provides several parameters

that can be used to limit the users' options:

JEA Session Configuration

87

 MaximumReceivedDataSizePerCommandMB: specifies the maxi-

mum amount of data in MB that can be transferred with one com-

mand (Default: 50MB).

 MaximumReceivedObjectSizeMB: determines the maximum size

of a single object that can be transferred (Default: 10MB)

 SessionType: decides which modules and snap-ins are available in

the session. These are none when the value is empty (and must be

explicitly added using the ModulesToImport parameter, for exam-

ple). Default allows users to extend the functionality themselves

using Import-Module. Finally, RestrictedRemoteServer provides half

a dozen cmdlets.

All of the parameters described here, except Name, can also be used later

to customize the configuration using Set-SessionConfiguration

(bit.ly/33Y3KIi).

4.1.7 Additional options via configuration file

In many cases, Register-PSSessionConfiguration can create the necessary

context for users to perform specific tasks on the remote host. As an ad-

ditional option you can run a script when starting the session

(StartupScript parameter).

But if that is not enough, there are more options available with a configu-

ration file. This can be created with the New-PSSessionConfigurationFile

cmdlet. You can pass the desired settings to the configuration file either

as parameters (see the complete list here: bit.ly/33Tfeg8) or you can run

it in this minimalist form:

New-PSSessionConfigurationFile -Path .\MyConfig.pssc

JEA Session Configuration

88

The file name requires the .pssc extension. Then open the file in a text

editor and add the desired settings, some of which are already available

and commented out.

Default file created by New-PSSessionConfigurationFile

The following are particularly useful to prevent users from potentially

harmful actions:

 LanguageMode with the values FullLanguage, RestrictedLanguage,

ConstrainedLanguage, NoLanguage: The latter allows only the exe-

cution of cmdlets and functions, other language resources are not

available. FullLanguage offers the full range of language capabili-

ties, the other two lie between these two poles.

 VisibleAliases, VisibleCmdlets, VisibleFunctions, VisibleProviders:

These allow you to specify which aliases, cmdlets, functions, and

providers are available in the session. You can use wildcards and

specify multiple values as array.

JEA Session Configuration

89

4.1.8 Limiting access to cmdlets

To restrict the available cmdlets to those which only read and do not write,

you could use the expression Get*, Select*:

New-PSSessionConfigurationFile -Path .\MyConfig.pssc `

-VisibleCmdlets "Get*","Select*"

Then, you adjust the Session Configuration based on this file:

Set-PSSessionConfiguration -Name HelpDesk `

-Path .\MyConfig.pssc

Create the configuration file and assign it to a new session configuration.

If you now try to establish an interactive remote session with the com-

puter, you will fail, because not all necessary commands are available:

Enter-PSSession -ComputerName remote-pc `

-ConfigurationName HelpDesk

JEA Session Configuration

90

The reduced range of functions is not sufficient for an interactive session.

Therefore, a user with this session configuration is restricted to issuing

commands remotely, for example, using a command like this:

Invoke-Command -ComputerName remote-pc `

-ConfigurationName Helpdesk {Get-ChildItem}

JEA Session Configuration

91

Issuing a command remotely in a restricted session using Invoke-Command

4.1.9 Assign a configuration to a session

As the two commands above show, you have to specify the desired session

configuration using the ConfigurationName parameter. If you don't do

that, microsoft.powershell will be applied and non-administrative users

will be kept out. But you can specify which configuration is used by default

with the variable $PSSessionConfigurationName.

Finally, you can remove session configurations that you no longer need by

using the Unregister-PSSessionConfiguration cmdlet. It requires only the

name of the configuration as its arguments.

Defining and assigning role functions

92

4.2 Defining and assigning role functions

Just Enough Administration (JEA) allows users without administrative priv-

ileges to perform management tasks. JEA is based on session configura-

tions that determine who gets access. Role capabilities then define the

means available for them in PowerShell.

You can already control some of the properties when you create or change

a session configuration with Register-PSSessionConfiguration or Set-PSSes-

sionConfiguration. You get more options by using a configuration file

(.pssc). Here, a certain language mode can be enforced or access to spe-

cific cmdlets can be restricted.

However, if you need a more complex set of rules to tailor the options in

a session to the needs of specific tasks, then you should define the role

functions in a separate .psrc file.

4.2.1 More flexibility using role capability files

This has at least two advantages. First, you have to update a session con-

figuration every time you change role functions directly in its configuration

file, and then restart WinRM. In contrast, external role definitions are

simply read in at runtime.

Secondly, independent role capability files can be assigned to several ses-

sion configurations, so that redundant information can be avoided. Con-

versely, it is also possible to use several of these role functions in a single

session configuration so that they can be structured modularly.

Defining and assigning role functions

93

4.2.2 Generating a role capability file

The files with the .psrc extension to describe role capabilities are text files.

A skeleton file can be created with the command:

New-PSRoleCapabilityFile -Path MyRCF.psrc

It contains all available options plus the corresponding description in a

commented form, so that you can edit them right away in an editor. When

creating the file, you could also use the numerous parameters of New-

PSRoleCapabilityFile (bit.ly/2NTpO12) to set various settings.

Example of a Role Capability File and its options

One of the most important aspects of a role definition is to restrict ses-

sions to specific cmdlets, functions, aliases, or variables. The use of

cmdlets can be limited down to the level of individual parameters.

https://bit.ly/2NTpO12

Defining and assigning role functions

94

4.2.3 Compiling VisibleCmdlets via GUI

It is relatively time-consuming if you want to manually enter such detailed

information in the .psrc file. This job is simplified by the JEA Helper Tool

(bit.ly/2OlLUYX), a PowerShell script with GUI. On the Role Capabilities De-

sign tab, you can interactively compile the list of cmdlets that the users of

a particular session are allowed to see.

Selecting the cmdlets that you want to use for a session configuration

If you select a module from the drop-down in the third row and then click

on Filter Cmdlets, the list in the second row is reduced to the cmdlets of

that module. After you have selected a cmdlet, a drop-down menu opens

https://bit.ly/2OlLUYX

Defining and assigning role functions

95

next to it with all of its parameters. Here you can select individual param-

eters or mark none of them in order to enable all of them.

Selecting the allowed parameters of a cmdlet

The tool offers additional features such as creating a .psrc skeleton with

New-PSRoleCapabilityFile or a new session configuration. Because of the

cumbersome operation, you will usually do without it.

Defining and assigning role functions

96

4.2.4 Saving the role capability file

Once you have created the list of permitted cmdlets and parameters, you

can add them to the .psrc file. You save this file in a directory called

RoleCapabilities under

$env:ProgramFiles\WindowsPowerShell\Modules

4.2.5 Assigning role functions to session configuration

The last step is to link the role capabilities to the desired session configu-

ration. To do this, edit the configuration file with the extension .pssc and

add the role functions there.

Since you create this file automatically at the beginning, this (commented

out) section for RoleDefinitions should already be there:

RoleDefinitions = @{ 'CONTOSO\SqlAdmins' = `

@{ RoleCapabilities = 'SqlAdministration' };

'CONTOSO\SqlManaged' = @{ RoleCapabilityFiles =

'C:\RoleCapability\SqlManaged.psrc' };

'CONTOSO\ServerMonitors' = `

@{ VisibleCmdlets = 'Get-Process' } }

Following the same pattern, you now add your own entry, whereby you

have 3 options, as shown in the example. The last of these defines the

allowed cmdlets directly in the Session Configuration File and is therefore

not applicable if you use a .psrc file.

If you save your .psrc file under the name SqlManaged.psrc in the module

path as described above, the entry could look like this:

Defining and assigning role functions

97

RoleDefinitions = @{ 'contoso\SqlAdmins' = `

@{ RoleCapabilities = 'SqlAdministration' }};

This gives the SqlAdmins group from the contoso domain the role capabil-

ities defined in SqlManaged.psrc.

Options for defining role capabilities in a session configuration file

If you have chosen a different location to save the file, then you have to

proceed as shown in the last entry in the example and enter the name of

the file including the path as value for RoleCapabilityFiles.

Finally, you have to update the session configuration using the following

command:

Set-PSSessionConfiguration -Name MySessionConfig `

-Path .\MyConfig.pssc

Log commands in a transcription file

98

5 Audit PowerShell activities

5.1 Log commands in a transcription file

In order to detect the abuse of PowerShell, you can record all executed

commands and scripts. There are two mechanisms for this, one of them

writes all input and output to a file. It is recommended to store the col-

lected data in a central location.

Microsoft describes the form of recording, where PowerShell logs all pro-

cessed inputs and the resulting output in one file, as "over-the-shoulder-

transcription". This term reflects that PowerShell writes to a file what an

observer would see when he looks over the shoulder of the user during

his PowerShell session.

5.1.1 Activate logging using a cmdlet

This variant has been around since the early days of PowerShell and, in the

past, could be controlled only explicitly by using the Start-Transcript and

Stop-Transcript cmdlets. To enable automatic recording of the commands,

you had to include the Start-Transcript call in the PowerShell profile.

Not only is this cumbersome if you have to configure many machines in

this way, but it is also relatively easy for an attacker to circumvent this

method. However, explicitly starting and stopping the recording using a

cmdlet can be useful if you include it in your own scripts to see what out-

put they produce.

Log commands in a transcription file

99

5.1.2 Enabling transcripts via GPO

Since PowerShell 5, you can turn on transcripts using group policy. The

corresponding setting is called Turn on PowerShell Transcription and can

be found under Policies => Administrative Templates => Windows Compo-

nents => Windows PowerShell.

Enable PowerShell transcripts via GPO. Optionally, specify a separate directory and activate
the timestamp.

If you activate it under both branches (computer and user configuration),

the setting is enforced at the computer level.

Log commands in a transcription file

100

5.1.3 Own log file for each session

By default, the feature creates a directory in the user's profile for each day

and writes the entries for each session to a separate text file, whose name

consists of "PowerShell_transcript" plus the hostname of the computer

and a random number.

PowerShell creates a separate log file for each session on each computer.

Of course, it makes sense to store the records centrally on a shared direc-

tory on the network. The Start-Transcript cmdlet uses the OutputDirectory

parameter to redirect output from the default directory to another. The

GPO setting for activating the transcripts includes a separate input field

for this purpose.

5.1.4 Protecting the log directory

Usually you will want to avoid that users read or even change the contents

of these log files. On the one hand, they may contain sensitive information

such as passwords, on the other hand, the necessary write permission

Log commands in a transcription file

101

would make it easy for an attacker to cover his tracks. Therefore, you have

to prevent users from viewing the files and their contents.

For this purpose, Microsoft recommends restricting the NTFS rights on the

shared directory.

Everybody' gets only the rights to 'Read' and 'Write'.

Specifically, you should proceed as follows:

 Disable inheritance for the configured log directory, remove all ex-

isting permissions

 Administrators get full access

 Everyone gets the right to 'Write'

 Creator owner is deprived of all rights

Log commands in a transcription file

102

Permissions for the PowerShell log directory

Another option for both Start-Transcript and GPO settings is to write a

header for each call. This contains a timestamp for the respective com-

mand.

Log commands in a transcription file

103

Transcript with header and timestamp for each command

If this option is used, the volume of recorded data increases considerably.

Since the header in each file already contains detailed information about

the session, you will usually not need the additional time stamp for each

action.

5.1.5 GPO does not work for PowerShell 6/7

The PowerShellExecutionPolicy.admx administrative template writes only

the registry values for Windows PowerShell, so that EnableTranscripting

does not affect PowerShell Core or PowerShell 7.

For version 6, you must therefore set the required key in the registry your-

self. The following content for a .reg file shows the names of the two

DWORDs and the path where you have to create them.

Log commands in a transcription file

104

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Pow-

erShellCore\Transcription]

"EnableTranscripting"=dword:00000001

"OutputDirectory"="\\server\\pslogs"

If you want to set these settings on a larger number of computers, it is

recommended to adjust the registry using the Group Policy Preferences.

PowerShell 7 comes with its own ADMX template which can be copied to

%systemroot%\policydefinitions or to the Central Store. The settings for

version 7 are located in the GPO Editor directly under Administrative Tem-

plates in the PowerShell Core container (both computer and user).

Enabling Transcription Logging for PowerShell 7 via Group Policy

Log commands in a transcription file

105

The policies are largely identical to those for Windows PowerShell, and the

same is true for Turn on PowerShell Transcription. It is particularly useful

that each setting has the option Use Windows PowerShell Policy setting so

that you don't have to manage PowerShell 7 separately.

Scriptblock logging: Record commands in the event log

106

5.2 Scriptblock logging: Record commands in the
event log

To detect suspicious activities, it is helpful to have all executed commands

recorded. In addition to recording the history in a text file, PowerShell has

also supported logging in the event log since version 5.

PowerShell v5 included several innovations in logging. It extended the

older method, the so-called "over-the-shoulder transcription," to all PS

hosts, including ISE, and hence was no longer limited to the command line.

Furthermore, this feature can now also be activated via group policies.

5.2.1 Logging the actual commands

The recording of all commands in a text file has been complemented by

the so-called deep scriptblock logging. It not only uses the Windows event

log instead of a text file, but also records all commands exactly as executed

by PowerShell. This way, malicious activity does not easily go unnoticed.

This applies, for example, to the use of dynamic code generation, where

commands are stored in a variable and then executed with the help of

Invoke-Expression. The feature also reveals attempts to hide command se-

quences by encoding them using Base64.

5.2.2 Activation only via GPO

While transcriptions can also be explicitly turned on and off using the

Start-Transcript and Stop-Transcript cmdlets, you can enable script block

Scriptblock logging: Record commands in the event log

107

logging only by using GPOs or by setting the appropriate registry key di-

rectly. Therefore, there is still a need for the older method, such as record-

ing the output in your own scripts.

Group policy to enable deep scriptblock logging

The relevant GPO setting is called Turn on PowerShell Script Block Logging

and can be found under Policies > Administrative Templates > Windows

Components > Windows PowerShell. If you configure it under Computer

and User Configuration, the former setting prevails.

If you select the option for start/stop, then you should expect a consider-

ably higher data volume because markers for the start and stop of all

events will be written to the log.

Scriptblock logging: Record commands in the event log

108

5.2.3 Preparing the event log

While you prepare the logging in text files by creating a directory on a file

share and assigning the necessary access rights, different preparatory

work is required for the newer logging.

Start by changing the maximum size of the event log from the default of

20 MB to a significantly higher value. This is required for two reasons: First,

depending on the configuration of the logging feature, a relatively large

amount of data is accumulated. Second, attackers should not be able to

simply cover their tracks by filling up the log relatively quickly with unsus-

picious entries.

Since the evaluation of the logs is left either to scripts developed for this

purpose or to SIEM tools, the recorded events are needed at a central lo-

cation. For this purpose, forward the entries written by PowerShell to a

computer in the network.

The logging is done under PowerShell/Operational

5.2.4 Event IDs

The logging takes place in the application log under Microsoft=> Windows

=> PowerShell => Operational, and the commands are recorded under

Scriptblock logging: Record commands in the event log

109

event ID 4104. If you also record start and stop events, these appear under

the IDs 4105 and 4106.

Custom filter in the event viewer for recorded script blocks

If you want to set up a user-defined filter for the recorded commands in

the event viewer, activate as source

 PowerShell (Microsoft-Windows-PowerShell),

 PowerShell (PowerShell)

 PowerShellCore

In addition, select Warning as the event type and enter 4104 as the ID.

Scriptblock logging: Record commands in the event log

110

5.2.5 Merging command sequences

While transcripts can write their data to a text file with virtually no limits,

the script block field in the event log limits the length of the record. There-

fore, longer scripts are split up and span several entries.

On Microsoft Docs, there is a template for a PowerShell script that can be

used to reassemble the log fragments. If for example you want to string

together all recordings for a process with ID 6524, then you could proceed

as follows:

$created = Get-WinEvent -FilterHashtable `

@{ProviderName="Microsoft-Windows-PowerShell"; Id=4104} |

where ProcessId -eq 6524

$sortedScripts = $created | sort {$_.Properties[0].Value}

$mergedScript = -join ($sortedScripts |

foreach {$_.Properties[2].Value})

5.2.6 Script block logging for PowerShell Core

As with transcripts, group policy enables logging of script blocks only for

Windows PowerShell. It has no effect on PowerShell Core 6.x and its suc-

cessor, PowerShell 7.

If you want to record the commands for version 6.x in the event log, you

have to set the registry key yourself. To do this, create the ScriptBlockLog-

ging key under

HKLM\SOFTWARE\Policies\Microsoft\PowerShellCore

and assign the value 1 to EnableScriptBlockLogging.

The following instructions in a .reg file will accomplish this task:

https://docs.microsoft.com/en-us/powershell/wmf/whats-new/script-logging

Scriptblock logging: Record commands in the event log

111

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Pow-

erShellCore\ScriptBlockLogging] "EnableScriptBlockLog-

ging"=dword:00000001

PowerShell 7, on the other hand, includes its own ADMX template, which

you can copy to %systemroot%\policydefinitions or to the central store. It

contains all the settings known from PowerShell 5, including those for

scriptblock logging.

Group policy settings for PowerShell 7

Finally, it should be noted that the log entries for PowerShell Core are lo-

cated directly under the Applications and Services logs. The event IDs for

logging are the same as for Windows PowerShell.

Issuing certificates for document encryption

112

5.3 Issuing certificates for document encryption

Beginning with version 5, PowerShell supports the IETF standard Crypto-

graphic Message Syntax (CMS) to encrypt data or log entries. It requires a

certificate that has been issued specifically for this purpose. If you want to

request the certificate from a Windows CA, you must first set up a tem-

plate for it.

Microsoft's instructions, for example, for Protect-CmsMessage

(bit.ly/2XPVQzB), always describe the procedure for issuing a self-signed

certificate with certreq.exe for document encryption. They pack the data

for requesting the certificate into an .inf file according to the following

pattern:

[Version]

Signature = "$Windows NT$"

[Strings]

szOID_ENHANCED_KEY_USAGE = "2.5.29.37"

szOID_DOCUMENT_ENCRYPTION = "1.3.6.1.4.1.311.80.1"

[NewRequest]

Subject = "cn=me@somewhere.com"

MachineKeySet = false

KeyLength = 2048

KeySpec = AT_KEYEXCHANGE

HashAlgorithm = Sha1

Exportable = true

RequestType = Cert

https://bit.ly/2XPVQzB

Issuing certificates for document encryption

113

KeyUsage = "CERT_KEY_ENCIPHERMENT_KEY_USAGE |

CERT_DATA_ENCIPHERMENT_KEY_USAGE"

ValidityPeriod = "Years"

ValidityPeriodUnits = "1000"

[Extensions]

%szOID_ENHANCED_KEY_USAGE% = "{text}%szOID_DOCUMENT_EN-

CRYPTION%"

To request the certificate, use the command:

certreq -new <INF-file-name>.inf <Certificate-name>.cer

The certificate is automatically copied to the local certificate store of the

logged-on user. If needed, you can export it and transfer it via GPO to the

computers on which you want to encrypt data (bit.ly/30OQJ4o).

5.3.1 Creating a template for enterprise CA

If you prefer a certificate issued by an internal Windows CA instead of a

self-signed certificate, the required template is missing by default. If you

want to create one, you can follow the settings of the above .inf file.

First, open the Certificate Templates Console, certtmpl.msc, and duplicate

a suitable existing template. In our example, we will use the template User.

https://bit.ly/30OQJ4o

Issuing certificates for document encryption

114

Duplicate an existing template as a basis for the new template for document encryption

Then assign the name for the new template under the General tab and

determine the template's period of validity.

Assign name to the new template

Next, change the purpose on the Request Handling tab to Encryption.

Here, you can also allow the private key to be exported if certificates for

Issuing certificates for document encryption

115

document encryption are needed on several computers to decrypt docu-

ments.

Change the purpose of the certificate template to "Encryption."

As with the .inf file shown above, the key length should be at least 2048

bits; the corresponding setting is found on the Cryptography tab.

Configure the necessary settings on the Extensions tab. Here, we edit the

Application Policies and remove all existing entries. Instead, we add Docu-

ment Encryption.

Issuing certificates for document encryption

116

Document encryption is added to the application policies

By default, the new certificate is used to encrypt the CERT_KEY_ENCI-

PHERMENT_KEY_USAGE certificates in the .inf file, which is sufficient for

the task described here. If you want to add CERT_DATA_ENCIPHER-

MENT_KEY_USAGE, then edit the Key Usage entry and select the Allow

encryption of user data option in the next dialog box.

Issuing certificates for document encryption

117

Enable encryption of user data when using keys

Finally, use the Security tab to make sure all users who request a certificate

based on this template have the Read and Register permissions.

5.3.2 Requesting a certificate

Now you can request your certificate using certmgr.msc. If you can't find

your new template in the list or it has a status of Unavailable in the ex-

tended view, then try this troubleshooting tip.

In the details, enter the subject name in the format specified in the tem-

plate. Under Private key => Key options, make sure it is exportable, if re-

quired.

Issuing certificates for document encryption

118

Request a certificate based on the new template

After you click Enroll, the new certificate should appear in the store of the

Current User.

Encrypt event logs and files with PowerShell and GPO

119

5.4 Encrypt event logs and files with PowerShell
and GPO

A feature introduced with Windows 10 and Server 2016 is Protected Event

Logging, which encrypts sensitive data in the event log. It uses the open

standard Cryptographic Message Syntax (CMS), which PowerShell sup-

ports with several cmdlets. You can also use them to encrypt or decrypt

files.

You may wonder why you should encrypt Windows log files. This feature

was triggered by the introduction of scriptblock logging in PowerShell 5,

which stores all entered commands in the event log. These commands

may also include credentials, which should not be visible to unauthorized

persons.

5.4.1 Activation via group policies

Basically, Protected Event Logging is a system-wide feature that can be

used by all applications and Windows services. If you activate it under Win-

dows 10, PowerShell is currently the only user of this encryption.

To enable secure event logging, Microsoft provides a setting in Group Pol-

icy. It is called Enable Protected Event Logging and can be found under

Computer Configuration => Policies => Administrative Templates => Win-

dows Components => Event Logging.

Encrypt event logs and files with PowerShell and GPO

120

The encryption of PowerShell entries in the event log can be enabled via group policies

To successfully activate this setting, a certificate specifically issued for doc-

ument encryption is required. Its public key is used to encode the log en-

tries. The GPO editor accepts several ways to link the policy to the certifi-

cate.

You can store it on a file share and specify its path. If the certificate is avail-

able in the store of the local computer, the user's fingerprint will also suf-

fice. A simple method is to export the certificate in Base64 encoded form,

the contents of which can simply be copied into the text field.

5.4.2 Decrypting logs with PowerShell

Once the GPO is in effect, you can no longer read the event log history of

the PowerShell commands entered on those machines. However, the

Encrypt event logs and files with PowerShell and GPO

121

Event Viewer lacks the necessary functions to decode the logs using the

private key.

The Event Viewer only presents the encrypted entries; it cannot decode them

Therefore, you must make these log entries readable with PowerShell. The

Unprotect-CmsMessage cmdlet, the opposite of Protect-CmsMessage, de-

crypts them.

For example, if you want to decipher the latest entry in the PowerShell log,

you could retrieve it via Get-WinEvent and pipe it to Unprotect-CmsMes-

sage:

$msg = Get-WinEvent `

Microsoft-Windows-PowerShell/Operational `

-ComputerName myPC -MaxEvents 2 -Credential domain\user

"Last log entry as clear text:"

Encrypt event logs and files with PowerShell and GPO

122

$msg[1] | select -ExpandProperty Message |

Unprotect-CmsMessage

$msg[0] is always "prompt"

Decrypting PowerShell logs with Unprotect-CmsMessage

A complete script for this purpose can be found on Emin Atac's blog

(bit.ly/2DM85Gx)

The problem with script block logging is that longer command sequences

are split across multiple log entries. Therefore, in this case you would have

to aggregate the individual sections and then pass them to Unprotect-

CmsMessage.

https://bit.ly/2DM85Gx

Encrypt event logs and files with PowerShell and GPO

123

5.4.3 Encrypting files

Protect-CmsMessage can also be used to encrypt any file. If their contents

are binary, then you should convert to a Base64 representation first.

Usage scenarios here may also include protecting sensitive data in scripts

or password files against unauthorized access. However, this technology

is certainly not intended as an alternative to an encrypting file system or

even a Bitlocker.

Because PowerShell uses the cryptographic message syntax standard, you

can decrypt encoded files using other tools on different platforms, such as

OpenSSL on Linux (bit.ly/2E21l6Y). Therefore, this PowerShell feature is

also suitable for exchanging confidential data between different operating

systems.

The process is relatively simple. Protect-CmsMessage expects the input file

via the Path parameter. Alternatively, you can provide the contents to be

encrypted via the Content parameter or via a pipeline. The target file is

specified via OutFile; otherwise, the output is stdout.

https://bit.ly/2E21l6Y

Encrypt event logs and files with PowerShell and GPO

124

Simple application of Protect-CmsMessage and Unprotect-CmsMessage

Other required information includes the certificate you want to use. The

parameter To, which accepts the fingerprint, subject name, or path to a

certificate, serves this purpose.

Conversely, Unprotect-CmsMessage only needs the content for decryp-

tion (via Content or Path); passing it via a pipe is also possible. The To pa-

rameter can be omitted if the certificate is in the local store.

5.4.4 Problems with the character set

Watch out for the character encoding of files. Otherwise, you will be sur-

prised by a distorted result after decryption. This is the case, for example,

with the following procedure:

Get-Process > process.txt

Protect-CmsMessage -Path process.txt -out process.enc `

-To 61F4C2FFF9CC…

Unprotect-CmsMessage -Path process.enc

Encrypt event logs and files with PowerShell and GPO

125

Incorrect character encoding destroys content during encryption and decryption

To avoid such unwanted effects, save the output using:

Get-Process | Out-File -FilePath process.txt `

-Encoding utf8

If you prefer the first variant with redirection to a file, then you must con-

vert the content to the correct character set when it is read for encryption:

Get-Content -Raw -Encoding UTF8 process.txt |

Protect-CmsMessage -To "CN=Max White" -out .\process.enc

Correct decoding of encrypted data when using UTF-8

Encrypt event logs and files with PowerShell and GPO

126

With this variant, you can take advantage of the appropriate features of

Get-Content.

Audit PowerShell keys in the registry

127

5.5 Audit PowerShell keys in the registry

The Windows registry contains numerous security-critical settings an at-

tacker can manipulate to override important protection mechanisms. For

example, an attacker can abuse it to bypass group policies. Auditing the

registry helps identify such undesirable activities.

If you want to protect PowerShell against misuse and record all commands

executed from the command line in a log file, a hacker probably wants to

disable this function to leave no traces. To do this, he could set the value

of EnableTranscripting to 0. This key is under:

HKLM\SOFTWARE\Policies\Microsoft\Windows\Pow-

erShell\Transcription

To find out about such manipulations, you should monitor the relevant

keys in the registry. In our example, these would be those set by Group

Policy Objects (GPOs) for PowerShell. As with auditing the file system,

three measures are required:

 Enable registry monitoring via GPO

 Configure the system access control list (SACL) for the resource in

question

 Analyze the event log

5.5.1 Activate registry auditing

The first step is to create a GPO and link it to the organizational unit (OU)

whose machines you wish to monitor for changes to the PowerShell keys

in the registry.

Audit PowerShell keys in the registry

128

Next, open the new policy in the GPO editor and navigate to Computer

Configuration => Policies => Windows Settings => Security Settings => Ad-

vanced Audit Policy Configuration => Audit Policies => Object Access. (Mi-

crosoft has deprecated the settings under Security Settings => Local Poli-

cies => Audit Policy since Windows 7.)

Activate auditing for registration via GPO

There you activate the Audit Registry setting, where you see two options:

Success and Failure. Deciding whether you want to record failed, success-

ful, or both accesses depends on the type and importance of the resource.

However, you should find a balance between the relevance of the rec-

orded events and the amount of data generated.

Audit PowerShell keys in the registry

129

In our example, we limit ourselves only to Success to find out when the

value of a key actually changed. Executing this command on the target

computers activates the group policy:

gpupdate /force

And now you can customize the SACL for the registry key.

5.5.2 Setting permissions for registry keys

To do this, navigate in regedit.exe to the described position in the registry

hive and execute the Permissions command from the PowerShell key con-

text menu. In the subsequent dialog, click on Advanced and open the Au-

diting tab in the next dialog.

Editing the SACL for registry keys under PowerShell

Audit PowerShell keys in the registry

130

Here you add a new entry. First, choose a security principle for tracking,

such as Everyone. In the next step, define which activities to record. For

our purpose, we select Query Value, Set Value, and Delete to record that

a value for this key has changed.

Select the type of accesses to record in the audit log

Again, you should keep in mind that monitoring full access may generate

too much data, especially if you configure the SACL further up in the reg-

istry tree.

5.5.3 Configuring SACL via GPO

When changing the SACL of this key in the registry of many computers, it

makes sense to use a GPO. You can configure the necessary setting under

Computer Configuration => Policies => Windows Settings => Security Set-

tings => Registry.

Audit PowerShell keys in the registry

131

There you open the context menu of the container or right-click in the

right panel. Then execute the Add Key command. In the following dialog,

navigate through the registry until you reach the desired key. If this key

does not exist on the local machine, you may also type the path into the

input field.

You can also change the SACL of a registry key via a GPO

After selecting a key, the same security dialog opens as described above

for regedit.exe. Therefore, the following procedure is the same as for con-

figuring the SACL in the registry editor.

5.5.4 Evaluating the event log

Finally, you should monitor the entries in the event log to discover suspi-

cious activities. Find these in the Security protocol with the IDs 4656, 4657,

Audit PowerShell keys in the registry

132

4660, and 4663. As we are only interested in changes in this specific case,

the Event IDs 4657 and 4660 are sufficient. ID 4660 represents deletion.

You can retrieve these logs with PowerShell as follows:

Get-EventLog -LogName Security -Source "*auditing*" -

InstanceId 4657,4660

Output audit logs for registration via PowerShell

If you prefer a GUI, you can create a user-defined view in the Event Viewer.

Audit PowerShell keys in the registry

133

Set up a custom view in the Event Viewer to filter out audit logs for registration

As a filter, select Security under Event logs, Microsoft Windows security

auditing for By source, and Registry for the Task category. Alternatively,

you can of course also filter the view using the event IDs.

Avoiding errors using strict mode

134

6 Improve PowerShell code

6.1 Avoiding errors using strict mode

Like other dynamic programming languages, PowerShell gives the user a

lot of freedom. This simplifies the fast development of short scripts, but it

also encourages sloppy programming style and all the problems resulting

from it. Strict mode eliminates some typical PowerShell pitfalls.

Strict mode is not a security feature in the narrower sense, although it can

be used to avoid bugs that could lead to data loss in the worst case. Its

primary purpose is to prevent errors in code that is syntactically correct

but leads to unwanted results. Their causes are often very difficult to track

down.

6.1.1 Versions of the strict mode

Perl has known such a mechanism for a long time, and in VBScript you can

use Option Explicit to force variables to be declared before they are used

for the first time. However, this mechanism doesn't overly limit developers

and require them for example to declare data types.

While in Perl you can enable strict mode separately for variables, subs and

references, PowerShell only expects a version number or the value Off.

You pass the version number to the Set-StrictMode cmdlet.

6.1.2 Strict Mode 1.0

The version 1.0 prevents the use of undeclared variables:

Avoiding errors using strict mode

135

Set-StrictMode -Version 1.0

if($a -gt 5){

 Out-Host '$a is greater than 5'

 }

Strict Mode 1.0 prevents the use of undeclared variables.

Since $a is used in the if expression without a value being assigned to it,

PowerShell shows an error message at this point.

6.1.3 Strict Mode 2.0

Version 2.0 additionally checks whether non-existing properties of an ob-

ject are referenced. This can happen due to a typo or because you are

dealing with a mix of objects where some do not have certain properties.

An example would be if you want to display all files that exceed a certain

size:

Avoiding errors using strict mode

136

Get-ChildItem | Where Length -gt 1GB

When Strict Mode Version 2.0 is activated, this command would issue an

error message for all directories because they do not have a Length prop-

erty.

Strict Mode 2.0 prevents the use of non-existent object properties.

This is also where the ambivalent nature of this mode becomes apparent,

because it triggers alarms even in harmless cases. Without Strict Mode the

directories would simply not be displayed.

Rather than avoiding strict mode 2, you would have to program more de-

fensively in this example. You could filter out the directories using the

PSIsContainer property:

gci |

? {$_.PSIsContainer -eq $false -and $_.length -gt 1GB}

Avoiding errors using strict mode

137

Strict mode 2.0 also helps to avoid wrong function calls. The different syn-

tax for executing methods and functions is one of the most popular pitfalls

in PowerShell, especially for those users who often deal with other pro-

gramming languages.

The command

myfunc(1, 2, 3)

interprets the arguments as one array instead of three different parame-

ters.

6.1.4 Strict Mode 3.0

Finally, there is version 3.0 of Strict Mode, but it is not documented. You

will get it automatically when you invoke

Set-StrictMode -Version Latest

in PowerShell 3.0 or a higher version. But you can also specify the "3.0"

explicitly here.

In addition to the criteria of the other two versions, it also checks whether

elements of an array are retrieved with an invalid index. This can happen

relatively easily if you iterate over the elements of an array in a loop:

At least PowerShell 3.0

$array = (1,2,3)

No error, output of $null

Set-StrictMode -Version 2.0

for ($i= 0; $i -le 3; $i++){

 $array[$i]

 }

Avoiding errors using strict mode

138

Error IndexOutOfRangeException

Set-StrictMode -Version 3.0

for ($i= 0; $i -le 3; $i++){

 $array[$i]

 }

The terminating condition for the loop is

$i -le 3

and this would also reference $array[3]. With only 3 elements, the highest

index is 2. Hence, Strict Mode 3.0 also acts as a bounds checker. Without

it, PowerShell would output the value $null here.

6.1.5 Scope of the strict mode

Finally, it should be noted that the definition of strict mode only applies to

the respective scope and all its included scopes.

Avoiding errors using strict mode

139

The strict mode defined in the function does not apply to calls on the command line.

If you set strict mode to version 3.0 in a function, for example, the default

setting remains on the console, i.e. switched off. Conversely, entering

Set-StrictMode -Version 3.0

on the command line will result in PowerShell checking all scripts started

from there to see whether the array index is out of bounds.

Checking code with ScriptAnalyzer

140

6.2 Checking code with ScriptAnalyzer

The open source project PSScriptAnalyzer is developing a code checker

that compares script code to predefined rules. They are based on the best

practices for PowerShell. It can even automatically correct certain devia-

tions.

The first versions of the code checker could be integrated into Pow-

erShell_ISE as an add-on called Script Browser. However, this no longer

works in PowerShell 5.x and the plug-in has been removed from the PS

Gallery. Instead, the Analyzer is now available through the PowerShell ex-

tension of Visual Studio Code and as a stand-alone module.

6.2.1 Installation via package management

If you develop PowerShell scripts not in VSCode, but in the ISE, as most

admins will probably do, then you can start the code checker from the

command line. To do so you have to install the module from the PSGallery

first:

Install-Module -Name PSScriptAnalyzer

As the command

Get-Command -Module PSScriptAnalyzer

shows, the module provides three cmdlets:

 Get-ScriptAnalyzerRule

 Invoke-ScriptAnalyzer

 Invoke-Formatter

Checking code with ScriptAnalyzer

141

6.2.2 Displaying the rules

The first of these cmdlets is used to display the available rules against

which the code of scripts is compared. If you call it without parameters, it

will show all of the currently 55 standard rules including their descriptions.

A useful parameter is Severity, which can use the Error and Warning values

to limit the list to serious or less serious problems:

Get-ScriptAnalyzerRule -Severity Error

This command would only show rules where a violation would be classified

as a bug. You need an overview of the rules set if you want to consider

only certain recommendations or exclude others during the review.

View the default rules for ScriptAnalyzer using Get-ScriptAnalyzerRule.

Several rules have been added to the latest versions:

Checking code with ScriptAnalyzer

142

 AvoidAssignmentToAutomaticVariable: This is to prevent develop-

ers from assigning values to automatic variables such as $ _.

 PossibleIncorrectUsageOfRedirectionOperator: This is mainly in-

tended for developers who often use other programming lan-

guages, where a > or < serve as a comparison operators for greater

or smaller. PowerShell uses -gt or -lt instead. The characters > and

< are reserved for redirection.

 PossibleIncorrectUsageOfAssignmentOperator: Checks for the pos-

sibly wrong usage of the assignment operator. This could happen,

for example, if Basic developers validate an expression for equal-

ity.

 AvoidTrailingWhiteSpace: The rule warns of spaces at the end of a

line of code. They could become a problem if line breaks occur

within a statement.

6.2.3 Checking script code

The actual checking of code is done with the help of Invoke-ScriptAnalyzer.

In most cases, you pass the cmdlet the name of a script file that you want

to check:

Invoke-ScriptAnalyzer -Path .\MyPSScript.ps1

The parameters IncludeRules and ExcludeRules can be used to explicitly

include or exclude certain rules. If you specify several rules here, then they

should be separated by a comma. Simple warnings could be suppressed,

for example, by assigning the value Error to the Severity parameter.

Checking code with ScriptAnalyzer

143

In this example, ScriptAnalyzer warns about using an alias in a script.

A new option in version 1.17.1 is Fix, which can automatically correct cer-

tain deviations from the commonly used rules. This applies, for example,

to the use of aliases for cmdlets. In some cases, script authors have to edit

such corrections manually, for example when converting plain text to a

secure string.

If you only want to check a code fragment and not an entire script file, use

the ScriptDefinition parameter instead of Path and pass the code to it as a

value. In this case, the Fix switch is not available for obvious reasons.

6.2.4 Formatting scripts

Finally, Invoke-Formatter is the third cmdlet that comes with the module.

As the name suggests, script authors can use it to tidy up the formatting

of the code. There are several conventions to choose from, which can be

selected via the Settings parameter using auto-completion.

Checking code with ScriptAnalyzer

144

Formatting options of Invoke-Formatter

It only accepts PowerShell code via the ScriptDefinition parameter, so you

may have to read the content of a script file via Get-Content-Raw before

you pass it to the formatter.

A detailed documentation of the module can be found on Github

(bit.ly/2rSLdil).

https://bit.ly/2rSLdil

PowerShell management solution

145

7 More security with
ScriptRunner

7.1 PowerShell management solution

In many organizations only a few selected experts use the capabilities of

PowerShell. The reasons for this are:

 PowerShell know-how is not widely available

 No central management of PowerShell scripts

 No secure credential management

 Delegation fails due to security and authorization reasons

ScriptRunner transforms PowerShell into a solution that benefits your en-

tire organization by making it much easier to develop, manage and dele-

gate scripts. As such, it takes care of the necessary security aspects.

Thereby PowerShell can also be used as a tool for the administration of

heterogeneous systems.

Five steps to safe automation and delegation

146

7.2 Five steps to safe automation and delegation

7.2.1 Central storage of all PowerShell scripts

When centralizing the scripts, it is important to store them in a well-struc-

tured way so that they can be easily retrieved later.

They can be separated by target systems such as Exchange, Office 365 or

Azure, or by target groups such as helpdesk or end users. Incidentally, the

folder names automatically represent tags, which allow you to easily filter

scripts.

ScriptRunner provides a central repository for all PowerShell scripts in the company.

Besides scripts, PowerShell modules are also subject to central administra-

tion. Therefore, you must, for example install modules for Office 365, Az-

ure or VMware only once and after that, they will be available for all fur-

ther activities.

Centralization is also an important step towards standardization, because

it ensures that the most current version of a specific script is always used

Five steps to safe automation and delegation

147

for all tasks. An automatic synchronization of the scripts with code man-

agement systems such as GitHub or TFS is also possible.

7.2.2 Secure credential management

Securely managing usernames and passwords for script execution is one

of the biggest challenges. ScriptRunner allows you to store this infor-

mation centrally and securely. For this purpose, the Windows credential

store is available on the ScriptRunner server, and password servers from

CyberArk, Pleasant and Thycotic are also supported.

This allows you to manage all credentials in a central repository, which

makes administration much easier, especially when using multiple

ScriptRunner instances.

For credentials management, ScriptRunner integrates password servers from multiple ven-
dors

Five steps to safe automation and delegation

148

7.2.3 Convenient web-based user interface

All components such as scripts, credentials and schedules are managed via

the AdminApp. The DelegateApp or Self-ServiceApp are available for exe-

cuting the scripts manually. Plausibility checks, dynamic selection lists, and

preconfigured default values reliably prevent users from making incorrect

entries.

This makes it very easy and safe for helpdesk staff and end users to per-

form recurring tasks with the help of scripts. PowerShell knowledge and

experience with the console are not required.

The input masks are automatically generated dynamically from the synop-

sis and parameter block of the respective PowerShell scripts. The time-

consuming programming and maintenance of user interfaces is therefore

not necessary.

PowerShell scripts can be deployed to users through a self-service portal.

Five steps to safe automation and delegation

149

7.2.4 Executing and monitoring all PowerShell scripts centrally

By processing scripts centrally, ScriptRunner provides a complete audit

trail of all PowerShell activities. Three execution options are available:

 Manually by a user using the ScriptRunner DelegateApp

 Scheduled for regular tasks

 Event-controlled by third-party systems

With the help of the ScriptRunner dashboard, you will always have an

overview of your entire PowerShell landscape. Information about pro-

cessing times, possible errors or unreachable backend systems can be eas-

ily retrieved.

In addition, detailed log files, Windows event log entries and Windows per-

formance counters are available for analysis.

The ScriptRunner dashboard provides an overview of all scripts and its associated resources.

Five steps to safe automation and delegation

150

7.2.5 Secure delegation to helpdesk and end users

With the points mentioned above, the prerequisites are now basically in

place to implement recurring tasks with PowerShell safely and easily. Del-

egating these tasks to employees in areas outside of IT administration,

however, poses an additional challenge. How do we ensure that these em-

ployees do not need administrative permissions in the respective backend

systems, such as Active Directory, Exchange, VMware or Office 365, for

execution?

ScriptRunner executes scripts with the help of the central service accounts

or service principals. The users are granted access to the desired actions

via the delegation in ScriptRunner and therefore do not need any elevated

privileges. Helpdesk staff or end users remain standard users of the do-

main and can still perform delegated tasks without security concerns.

With ScriptRunner, administrative tasks can be securely delegated to standard users.

Additional information

151

7.3 Additional information

Would you like to learn more about ScriptRunner? Then visit our homep-

age at www.scriptrunner.com

On our PowerShell poster, you will find all important commands and

cmdlets at a glance. Get your free copy at www.scriptrunner.com/poster

The PowerShell poster contains all of the commands and important cmdlets.

You can read more about PowerShell related security topics on our blog:

https://www.scriptrunner.com/en/blog/security-powershell-scripting/

Password servers can also provide additional security. More about their

use in the TechSnips video: http://y2u.be/6gfubJAs-RA

http://www.scriptrunner.com/
http://www.scriptrunner.com/poster
https://www.scriptrunner.com/en/blog/security-powershell-scripting/
http://y2u.be/6gfubJAs-RA

