
Hailo TAPPAS
User Guide

Release 3.16.0
March 2022

Hailo TAPPASTM | User Guide

1 Disclaimer and Proprietary Information Notice

1.1 Copyright

©2022Hailo Technologies Ltd (“Hailo”). All Rights Reserved. Nopart of this documentmaybe reproduced
or transmitted in any formwithout the expressed, written permission of Hailo. Nothing contained in this
document should be construed as granting any license or right to use proprietary information for that
matter, without the written permission of Hailo. This version of the document supersedes all previous
versions.

1.2 General Notice

Hailo, to the fullest extent permitted by law, provides this document “as-is” and disclaims all warranties,
either express or implied, statutory or otherwise, including but not limited to the implied warranties of
merchantability, non-infringement of third parties’ rights, and fitness for particular purpose. Although
Hailo used reasonable efforts to ensure the accuracy of the content of this document, it is possible that
this documentmay contain technical inaccuracies or other errors. Hailo assumes no liability for any error
in this document, and for damages, whether direct, indirect, incidental, consequential or otherwise, that
may result from such error, including, but not limited to loss of data or profits. The content in this doc-
ument is subject to change without prior notice and Hailo reserves the right to make changes to content
of this document without providing a notification to its users.

V3.16.0 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Hailo Tappas | User Guide

1/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Hailo TAPPAS Applications

Overview

Hailo’s TAPPAS (Template APPlications And Solutions) is an infrastructure designed for

easy development and deployment of high-performance edge applications based on

the industry-leading Hailo-8™ AI processor . Hailo TAPPAS is pre-packaged with a rich

set of applications built on top of state-of-the-art deep neural networks, demonstrating

Hailo’s best-in-class throughput and power efficiency. For users seeking to quickly

deploy their own networks on the Hailo-8, the TAPPAS provides an easy-to-use,

GStreamer-based template for application development.

TAPPAS pre-trained applications and development environment reduce development

time and effort, allowing customers to accelerate time to market. The open

applications infrastructure offers different operational modes, as well as bring-your-

own-model and DIY support functionalities that help improve development flexibility.

https://gstreamer.freedesktop.org/documentation/application-development/introduction/gstreamer.html?gi-language=c

Hailo Tappas | User Guide

2/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Changelog

TAPPAS v3.16.0 (March 2022)

New Apps:

Hailo Century app - Demonstrates detection on one video file source over 6

different Hailo-8 devices

Python app - A classification app using a post-process written in Python

New Elements:

Tracking element "HailoTracker" - Add tracking capabilities

Python element "HailoPyFilter" - Enables to write post-processes using

Python

Yocto Hardknott is now supported

Raspberrypi 4 Ubuntu dedicated apps

HailoCropper cropping bug fixes

HailoCropper now accepts cropping method as a shared object (.so)

TAPPAS v3.14.1 (March 2022)

Fix Yocto Gatesgarth compilation issue

Added support for hosts without X-Video adapter

TAPPAS v3.15.0 (February 2022)

New Apps:

Detection and depth estimation - Networks switch app

Detection (MobilenetSSD) - Single scale tilling app

TAPPAS v3.14.0 (January 2022)

New Apps:

Cascading apps - Face detection and then facial landmarking

New Yocto layer - Meta-hailo-tappas

Window enlargement is now supported

Added the ability to run on multiple devices

Improved latency on Multi-device RTSP app

TAPPAS v3.13.0 (November 2021)

Context switch networks in multi-stream apps are now supported

New Apps:

Yolact - Instance segmentation

FastDepth - Depth estimation

Two networks in parallel on the same device - FastDepth + Mobilenet SSD

Retinaface

Control Element Integration - Displaying device stats inside a GStreamer pipeline

(Power, Temperature)

New Yocto recipes - Compiling our GStreamer plugins is now available as a Yocto

recipe

Added a C++ detection example (native C++ example for writing an app,

without GStreamer)

https://hailo.ai/product-hailo/hailo-8-century-evaluation-platform/

Hailo Tappas | User Guide

3/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

TAPPAS v3.12.0 (October 2021)

Detection app - MobilenetSSD added

NVR multi-stream multi device app (detection and pose estimation)

Facial Landmarks app

Segmentation app

Classification app

Face detection app

Hailomuxer gstreamer element

Postprocess implementations for various networks

GStreamer infrastructure improvements

Added ARM architecture support and documentation

TAPPAS v3.11.0 (September 2021)

GStreamer based initial release

NVR multi-stream detection app

Detection app

Hailofilter gstreamer element

Pose Estimation app

Hailo Tappas | User Guide

4/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Table of Contents

1. Getting Started

1. Prerequisites

2. Getting Started

3. Verify Hailo Installation

4. GStreamer

5. Hailo GStreamer Concepts

6. Where to Go From Here?

7. Terminology

8. Useful Links

2. GST-launch based X86 applications

1. Sanity pipeline

2. Detection Pipeline

3. Instance Segmentation Pipeline

4. Depth Estimation Pipeline

5. Detection and Depth Estimation Pipelines

6. Multi-Stream Pipeline

7. Pose Estimation Pipeline

8. Segmentation Pipeline

9. Facial Landmarks Pipeline

10. Face Detection Pipeline

11. Face Detection and Facial Landmarking Pipeline

12. Tiling Pipeline

13. Classification Pipeline

14. Multi-stream Multi-device Pipeline

15. Detection and Depth Estimation - networks switch App

16. Python Classification Pipeline

17. Century Pipeline

3. GST-launch based ARM applications

1. Detection Pipeline

4. GST-launch based Raspberry Pi applications

1. Sanity Pipeline

2. Detection

3. Depth Estimation

4. Multinetworks parallel

5. Pose Estimation

6. Face Detection

7. Classification

5. Native C++ applications

1. Detection

6. Hailo GStreamer Elements

7. HailoNet

1. HailoFilter

2. HailoFilter2

3. HailoPython

Hailo Tappas | User Guide

5/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

4. HailoOverlay

5. HailoMuxer

6. HailoDeviceStats

7. HailoAggregator

8. HailoCropper

9. HailoTileAggregator

10. HailoTileCropper

8. Installation

1. Docker Install

2. Manual Install

3. Yocto

4. Cross Compile

9. Further Reading

1. GStreamer Framework

2. Debugging with GstShark

3. Debugging with Gst-Instruments

10. Writing Your Own Postprocess

1. Getting Started

2. Compiling and Running

3. Filter Basics

4. Next Steps (Drawing)

11. Writing Your Own Python Postprocess

1. Overview

2. Getting Started

3. Next Steps (Drawing)

Hailo Tappas | User Guide

6/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Prerequisites

Ubuntu 18.04 or 20.04 - You can check it with the following command:

lsb_release -r

Hailo-8 device - Check that your board is recognized by opening a terminal and

running:
lspci -d 1e60:. You should get in response: bb:dd:ff Co-processor:
Hailo Technologies Ltd. Hailo-8 AI Processor (rev 01)

At least 6GB's of free disk space

Getting started

X86

We provide three installation methods:

The simple and recommended installation method is detailed in the Docker install

guide

You can follow our Manual install guide

If you already have a pre built docker image follow our instructions for Running

TAPPAS container from pre-built Docker image

Arm

We provide two installation methods:

Yocto - integration of Hailo layers in embedded BSP Read more about Yocto

installation

Cross compilation - cross compile Hailo GStreamer plugins and post processes

Read more about the cross compilation

Verify Hailo Installation

Make sure that hailo is identified correctly by running this command: hailortcli fw-
control identify, The expected output should look similar to the one below:

root@hailo-nvr:/hailo# hailortcli fw-control identify

Identifying board

Control Protocol Version: 2

Firmware Version: X.X.X (develop,app)

Logger Version: 0

Board Name: Hailo-8

Device Architecture: HAILO8_B0

Serial Number: 0000000000000009

Part Number: HM218B1C2FA

Product Name: HAILO-8 AI ACCELERATOR M.2 M KEY MODULE

GStreamer

GStreamer is a framework for creating streaming media applications. ​

GStreamer's development framework makes it possible to write any type of streaming

multimedia application. The GStreamer framework is designed to make it easy to write

Hailo Tappas | User Guide

7/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

applications that handle audio or video or both. It isn't restricted to audio and video

and can process any kind of data flow. ​The framework is based on plugins that will

provide various codecs and other functionality. The plugins can be linked and arranged

in a pipeline. This pipeline defines the flow of the data. ​The GStreamer core function is

to provide a framework for plugins, data flow, and media type handling/negotiation. It

also provides an API to write applications using the various plugins.​

For additional details check GStreamer overview

Hailo Tappas | User Guide

8/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Hailo GStreamer Concepts

Into the GStreamer framework, Hailo brings its functionality so we can infer video

frames easily and intuitively without compromising on performance and flexibility.

Hailo Concepts

Network encapsulation​ - Since in a configured network group, there are only

input and output layers a GstHailoNet will be associated to a "Network" by its

configured input and output pads​

Network independent elements​ - The GStreamer elements will be network

independent, so the same infrastructure elements can be used for different

applicative pipelines that use different NN functionality, configuration, activation,

and pipelines​. Using the new API we can better decouple network configuration

and activation stages and thus better support network switching​

GStreamer Hailo decoupling​ - Applicative code will use Hailo API and as such

will be GStreamer independent. This will help us build and develop the NN and

postprocessing functionality in a controlled environment (with all modern IDE and

debugging capabilities).

Context control​ - Our elements will be contextless and thus leave the context

(thread) control to the pipeline builder​

GStreamer reuse​ - our pipeline will use as many off the shelf GStreamer

elements​

Hailo Elements

hailonet - Element for sending and reciveing data from Hailo-8 chip

hailofilter - Element which enables the user to apply a postprocess or drawing

operation to a frame and its tensors

hailomuxer - Muxer element used for Multi-Hailo-8 setups

hailodevicestats - Hailodevicestats is an element that samples power and

temperature

hailopython - Element which enables the user to apply a postprocess or drawing

operation to a frame and its tensors via python.

hailoaggregator - HailoAggregator is an element designed for application with

cascading networks. It has 2 sink pads and 1 source

hailocropper - HailoCropper is an element designed for application with cascading

networks. It has 1 sink and 2 sources

hailotileaggregator - HailoTileAggregator is an element designed for application

with tiles. It has 2 sink pads and 1 source

hailotilecropper - HailoTileCropper is an element designed for application with

tiles. It has 1 sink and 2 sources

Hailo Tappas | User Guide

9/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Where to Go From Here?

That's a great question! Hailo provides a sanity application that helps you verify that

the installation phase went well. This is a good starting point.
Apps can be found

under: Apps path

Terminology

NVR (Network Video Recorder)

NVR is a specialized hardware and software solution used in IP (Internet Protocol) video

surveillance systems. In most cases, the NVR is intended for obtaining video streams

from the IP cameras (via the IP network) for the purpose of storage and subsequent

playback.

Real Time Streaming Protocol (RTSP)

Is a network control protocol designed for use in entertainment and communications

systems to control streaming media servers. This protocol is used for establishing and

controlling media sessions between endpoints.

Video Acceleration API (VA-API)

VAAPI is an open source API made by Intel that allows applications to use hardware

video acceleration capabilities, usually provided by the GPU. It is implemented by the

libva library and utilizes hardware-specific drivers.

Useful Links

Some useful GStreamer debugging tools:

Writhing your own postprocess - A detailed guide about how to write your own

postprocess

Debugging tips - Debugging tips from our experience

Cross compile - A cross-compilation guide

GstShark - Profiling tool for GStreamer

GstInstruments - Basic debugging tool for GStreamer

https://developer.ridgerun.com/wiki/index.php?title=GstShark
https://github.com/kirushyk/gst-instruments

Hailo Tappas | User Guide

10/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

GST-launch based X86 applications

GST-Launch based applications

1. Sanity Pipeline - Helps you verify that all the required components are installed

correctly

2. Detection - single-stream object detection pipeline on top of GStreamer using the

Hailo-8 device.

3. Depth Estimation - single-stream depth estimation pipeline on top of GStreamer

using the Hailo-8 device.

4. Multinetworks parallel - single-stream multi-networks pipeline on top of

GStreamer using the Hailo-8 device.

5. Instance segmentation - single-stream instance segmentation on top of

GStreamer using the Hailo-8 device.

6. Multi-stream detection - Multi stream object detection (up to 8 RTSP cameras into

one Hailo-8 chip).

7. Pose Estimation - Human pose estimation using centerpose network.

8. Segmentation - Semantic segmentation using resnet18_fcn8 network on top of

GStreamer using the Hailo-8 device.

9. Facial Landmarks - Facial landmarking application.

10. Face Detection - Face detection application.

11. Face Detection and Facial Landmarking Pipeline - Face detection and then facial

landmarking.

12. Tiling - Single scale tiling detection application.

13. Classification - Classification app using resnet_v1_50 network.

14. Multi-stream Multi-device - Demonstrates Hailo's capabilities using multiple-chips

and multiple-streams.

15. Detection and Depth Estimation - networks switch App - Demonstrates Hailonet

network-switch capability.

16. Python Classification Pipeline - Classification app using resnet_v1_50 with

python post-processing.

17. Century Pipeline - demonstrates detection on one video file source over 6

different Hailo-8 devices.

Hailo Tappas | User Guide

11/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Sanity pipeline

Overview

Sanity apps purpose is to help you verify that all the required components have been

installed successfully.

First of all, you would need to run sanity_gstreamer.sh and make sure that the image

presented looks like the one that would be presented later.

Sanity GStreamer

This app should launch first.

NOTE: Open the source code in your preferred editor to see how simple this app

is.

In order to run the app just cd to the sanity_pipeline directory and launch the app

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/sanity_pipeline

./sanity_gstreamer.sh

The output should look like:

If the output is similar to the image shown above, you are good to go to the next

verification phase!

Hailo Tappas | User Guide

12/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Detection Pipeline

Overview:

detection.sh demonstrates detection on one video file source and verifies Hailo’s

configuration.
This is done by running a single-stream object detection pipeline
on top of GStreamer using the Hailo-8 device.

Options

./detection.sh [--input FILL-ME]

--input is an optional flag, a path to the video displayed (default is

detection.mp4).

--netowrk is a flag that sets which network to use. Choose from [YoloV3, YoloV4,

YoloV5, Mobilenet_ssd], default is YoloV5.
this will set the HEF file to use, the

hailofilter function to use and the scales of the frame to match the width and

heigh input dimensions of the network.

--show-fps is an optional flag that enables printing FPS on screen.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it

Supported Networks:

'YoloV5' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov5m.yaml

'YoloV4' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov4_leaky.yaml

'YoloV3' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov3_gluon.yaml

'Mobilenet_ssd' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/ssd_mobilenet_v1.

yaml

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/detection

./detection.sh

The output should look like:

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov5m.yaml
https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov4_leaky.yaml
https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov3_gluon.yaml
https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/ssd_mobilenet_v1.yaml

Hailo Tappas | User Guide

13/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

How it works

This section is optional and provides a drill-down into the implementation of the

detection app with a focus on explaining the GStreamer pipeline.
This section uses

yolov5 as an example network so network input width, height, and hef name are set

accordingly.

gst-launch-1.0 \

 filesrc location=$video_device ! decodebin ! videoconvert ! \

 videoscale ! video/x-raw,width=640,height=640,pixel-aspect-
ratio=1/1 ! \

 queue ! \

 hailonet hef-path=$hef_path debug=False is-active=true qos=false
batch-size=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter function-name=yolov5 so-path=$POSTPROCESS_SO
qos=false debug=False ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False !
\

 videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Specifies the location of the video used, then decodes and converts to the

required format.

2. videoscale ! video/x-raw,pixel-aspect-ratio=1/1 ! \

Re-scale the video dimensions to fit the input of the network. In this case it is

rescaling the video to 640x640 with the caps negotiation of hailonet.

Hailo Tappas | User Guide

14/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

3. queue ! \

Before sending the frames into the hailonet element, set a queue so no frames

are lost (Read more about queues here)

4. hailonet hef-path=$hef_path debug=False is-active=true
qos=false batch-size=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

5. hailofilter function-name=yolov5 so-path=$POSTPROCESS_SO
qos=false debug=False ! \

 queue name=hailo_draw0 leaky=no max-size-buffers=30 max-size-
bytes=0 max-size-time=0 ! \

 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False
! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Each hailofilter performs a given post-process. In this case the first performs

the Yolov5m post-process and the second performs box drawing.

6. videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

NOTE: Additional details about the pipeline provided in further examples

Strcuture of the pipeline

?
pipeline0

Time: 0 ns
(0.0%)

CPU: 0.0%

GstFileSrc
src_0

Time: 14.7 ms
(0.4%)

CPU: 0.2%

GstDecodeBin
decodebin0

Time: 0 ns
(0.0%)

CPU: 0.0%

GstMultiQueue
multiqueue0

Time: 22.7 ms
(0.7%)

CPU: 0.3%

GstH264Parse
h264parse0

Time: 31.9 ms
(0.9%)

CPU: 0.4%

GstCapsFilter
capsfilter1

Time: 61.0 ms
(1.8%)

CPU: 0.7%

avdec_h264
avdec_h264-0
Time: 185 ms

(5.3%)
CPU: 2.1%

GstTypeFindElement
typefind

Time: 5.50 ms
(0.2%)

CPU: 0.1%

GstQTDemux
qtdemux0

Time: 19.7 ms
(0.6%)

CPU: 0.2%

GstVideoScale
videoscale0

Time: 10.3 ms
(0.3%)

CPU: 0.1%

GstVideoConvert
videoconvert0

Time: 937 ms
(27.0%)

CPU: 10.6%

GstQueue
queue0

Time: 22.7 ms
(0.7%)

CPU: 0.3%

GstHailoNet
hailonet0

Time: 0 ns
(0.0%)

CPU: 0.0%

GstHailoSend
hailosend

Time: 797 ms
(22.9%)

CPU: 9.0%

GstQueue
hailo_infer_q_0
Time: 8.83 ms

(0.3%)
CPU: 0.1%

GstHailoRecv
hailorecv

Time: 305 ms
(8.8%)

CPU: 3.5%

GstQueue
queue1

Time: 22.1 ms
(0.6%)

CPU: 0.3%

GstHailoFilter
hailofilter0

Time: 219 ms
(6.3%)

CPU: 2.5%

GstQueue
queue2

Time: 21.8 ms
(0.6%)

CPU: 0.2%

GstHailoFilter
hailofilter1

Time: 120 ms
(3.5%)

CPU: 1.4%

GstVideoConvert
videoconvert1

Time: 602 ms
(17.3%)

CPU: 6.8%

GstFPSDisplaySink
hailo_display

Time: 0 ns
(0.0%)

CPU: 0.0%

GstXImageSink
xvimagesink0

Time: 62.1 ms
(1.8%)

CPU: 0.7%

GstCapsFilter
capsfilter0

Time: 5.35 ms
(0.2%)

CPU: 0.1%

2.28 MiB 2.25 MiB 2.25 MiB 2.25 MiB 243 MiB2.28 MiB 2.27 MiB 243 MiB 383 MiB 347 MiB 347 MiB 328 MiB 328 MiB 292 MiB 292 MiB 255 MiB 255 MiB 341 MiB243 MiB

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

15/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Depth Estimation Pipelines

Depth Estimation

depth_estimation.sh demonstrates depth estimation on one video file source.
This is

done by running a single-stream object depth estimation pipeline on top of

GStreamer using the Hailo-8 device.

Options

./depth_estimation.sh [--video-src FILL-ME]

-i --input is an optional flag, a path to the video displayed.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it

--show-fps is an optional flag that enables printing FPS on screen

Run

cd /local/workspace/tappas/apps/gstreamer/x86/depth_estimation

./depth_estimation.sh

The output should look like:

Model

fast_depth in resolution of 224X224X3.

How it works

This section is optional and provides a drill-down into the implementation of the depth
estimation app with a focus on explaining the GStreamer pipeline.
This section uses

fast_depth as an example network so network input width, height, hef name, are set

accordingly.

Hailo Tappas | User Guide

16/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

gst-launch-1.0 \

 $source_element ! queue ! \

 videobox autocrop=true ! video/x-raw, width=1200, height=700,
pixel-aspect-ratio=1/1 ! \

 queue ! \

 videoscale ! video/x-raw, width=224, height=224 ! queue !
videoconvert ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path debug=False is-active=true qos=false
batch-size=1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 tee name=t ! queue ! videoconvert ! xvimagesink sync=false t. ! \

 hailofilter so-path=$draw_so qos=false debug=False ! \

 videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=false text-overlay=false ${additonal_parameters}"

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Specifies the location of the video used, then decodes and converts to the

required format.

2. videobox autocrop=true ! video/x-raw, width=1200, height=700,
pixel-aspect-ratio=1/1 ! \

 videoscale ! video/x-raw, width=224, height=224

Re-scales the video dimensions to fit the input of the network. In this case it is

cropping the video and rescaling the video to 224x224 with the caps negotiation

of hailonet.

3. queue leaky=no max-size-buffers=13 max-size-bytes=0 max-size-
time=0 ! \

Before sending the frames into hailonet element, set a queue so no frames are

lost (Read more about queues here)

4. hailonet hef-path=$hef_path debug=False is-active=true
qos=false batch-size=1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

17/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

5. hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False
! \

Performs a given draw-process, in this case, performs fast_depth depth

estimation drawing per pixel.

6. videoconvert ! \

 fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

NOTE: Additional details about the pipeline provided in further examples

Instance Segmentation Pipeline

Overview:

instance_segmentation.sh demonstrates instance segmentation on one video file

source and verifies Hailo’s configuration.
This is done by running a single-stream

instance segmentation pipeline on top of GStreamer using the Hailo-8 device.

Options

./instance_segmentation.sh [--input FILL-ME]

--input is an optional flag, a path to the video displayed (default is

detection.mp4).

--show-fps is an optional flag that enables printing FPS on screen.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it"

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/instance_segmentation

./instance_segmentation.sh

The output should look like:

Hailo Tappas | User Guide

18/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

How it works

This section is optional and provides a drill-down into the implementation of the

instance_segmentation app with a focus on explaining the GStreamer pipeline.
This

section uses yolact_regnetx_800mf_fpn_20classes as an example network so

network input width, height, and hef name are set accordingly.

gst-launch-1.0 \

 filesrc location=$video_device ! decodebin ! videoconvert ! \

 videoscale ! video/x-raw,width=512,height=512,pixel-aspect-
ratio=1/1 ! \

 queue queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! \

 hailonet hef-path=$hef_path debug=False is-active=true qos=false
batch-size=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$POSTPROCESS_SO qos=false debug=False ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False !
\

 videoconvert ! \

 fpsdisplaysink video-sink=ximagesink name=hailo_display sync=true
text-overlay=false ${additonal_parameters}

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Specifies the location of the video used, then decodes and converts to the

required format.

Hailo Tappas | User Guide

19/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

2. videoscale ! video/x-raw,pixel-aspect-ratio=1/1 ! \

Re-scale the video dimensions to fit the input of the network. In this case it is

rescaling the video to 512x512 with the caps negotiation of hailonet.

3. queue queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! \

Before sending the frames into the hailonet element, set a queue so no frames

are lost (Read more about queues here)

4. hailonet hef-path=$hef_path debug=False is-active=true
qos=false batch-size=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

5. hailofilter so-path=$POSTPROCESS_SO qos=false debug=False ! \

 queue name=hailo_draw0 leaky=no max-size-buffers=30 max-size-
bytes=0 max-size-time=0 ! \

 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False
! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Each hailofilter performs a given post-process. In this case the first performs

the yolact post-process and the second performs box and segmentation mask

drawing.

6. videoconvert ! \

 fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

NOTE: Additional details about the pipeline provided in further examples

Detection and Depth Estimation

Pipelines

detection_and_depth_estimation.sh demonstrates depth estimation and detection

on one video file source.
This is done by running two streams on top of GStreamer

using one Hailo-8 device with using two hailonet elements.

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

20/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Options

./detection_and_depth_estimation.sh [--video-src FILL-ME]

-i --input is an optional flag, a path to the video displayed.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it

--show-fps is an optional flag that enables printing FPS on screen

Run

cd /local/workspace/tappas/apps/gstreamer/x86/multinetworks_parallel

./detection_and_depth_estimation.sh

The output should look like:

Model

fast_depth in resolution of 224X224X3.

mobilenet_ssd in resolution of 300X300X3.

How it works

This section is optional and provides a drill-down into the implementation of the app

with a focus on explaining the GStreamer pipeline.
This section uses fast_depth as an

example network so network input width, height, hef name, are set accordingly.

gst-launch-1.0 \

 $source_element ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 videobox autocrop=true ! video/x-raw, width=1200, height=700,
pixel-aspect-ratio=1/1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 videoscale ! video/x-raw, width=300, height=300 ! queue ! \

 tee name=t ! \

 videoscale ! video/x-raw, width=224, height=224! videoconvert ! \

Hailo Tappas | User Guide

21/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path debug=False is-active=true
inputs=$depth_estimation_inputs outputs=$depth_estimation_outputs
qos=false batch-size=1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$depth_estimation_draw_so qos=false
debug=False ! \

 videoscale ! video/x-raw, width=300, height=300 ! \

 comp.sink_0 \

 t. ! \
 videoconvert ! \

 hailonet hef-path=$hef_path debug=False is-active=true
inputs=$detection_inputs outputs=$detection_outputs qos=false batch-
size=1 ! \
 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$detection_post_so function-
name=mobilenet_ssd_merged qos=false debug=False ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$detection_draw_so qos=false debug=False ! \

 comp.sink_1 \

 compositor name=comp start-time-selection=0 $compositor_locations
! queue ! videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=false text-overlay=false ${additonal_parameters}

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Specifies the location of the video used, then decodes and converts to the

required format.

2. videobox autocrop=true ! video/x-raw, width=1200, height=700,
pixel-aspect-ratio=1/1 ! \

 videoscale ! video/x-raw, width=300, height=300

Re-scales the video dimensions to fit the input of the network. In this case it is

cropping the video and rescaling the video to 224x224 with the caps negotiation

of hailonet.

3. tee name=t !

Split into two threads - one for mobilenet_ssd and the other for fast_depth.

4. queue leaky=no max-size-buffers=13 max-size-bytes=0 max-size-
time=0 ! \

Hailo Tappas | User Guide

22/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Before sending the frames into hailonet element, set a queue so no frames are

lost (Read more about queues here)

5. hailonet hef-path=$hef_path debug=False is-active=true
inputs=$depth_estimation_inputs
outputs=$depth_estimation_outputs qos=false batch-size=1

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

NOTE: We pre define the input and the output layers of each network,

giving the net name argument.

6. hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False
! \

Performs a given draw-process, in this case, performs fast_depth depth

estimation drawing per pixel.

7. compositor ! \

 fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

NOTE: Additional details about the pipeline provided in further examples

Multi-Stream RTSP object detection

Pipeline

Overview

This GStreamer pipeline demonstrates object detection on 8 camera streams over

RTSP protocol.

All the streams are processed in parallel through the decode and scale phases, and

enter the Hailo device frame by frame.

Afterwards postprocess and drawing phases add the classified object and bounding

boxes to each frame.

The last step is to match each frame back to its respective stream and output all of

them to the display.

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

23/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Real Time Streaming Protocol (RTSP) is a network control protocol designed for

use in entertainment and communications systems to control streaming media servers.

The protocol is used for establishing and controlling media sessions between endpoint.

Prerequisites

TensorPC

Ubuntu 18.04

RTSP Cameras, We recommend using: AXIS M10 Network Cameras

Hailo-8 device connected via PCIe

Preparations

1. Before running, configuration of the RTSP camera sources is required.
open the

multistream_pipeline.sh in edit mode with your preffered editor.
Configure the

eight sources to match your own cameras.

readonly SRC_0="rtsp://<ip address>/?h264x=4 user-id=<username> user-
pw=<password>"

readonly SRC_1="rtsp://<ip address>/?h264x=4 user-id=<username> user-
pw=<password>"

etc..

Run the pipeline

./multistream_pipeline.sh

1. --show-fps prints the fps to the output.

https://www.axis.com/products/axis-m1045-lw

Hailo Tappas | User Guide

24/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

2. --disable-vaapi disables the vaapi accelerator usage. This replaces decoder

elements and videosink elements from vaapi to decodebin, videoscale and

autovideosink.

3. --num-of-sources sets the number of rtsp sources to use by given input. the

default and recommended value in this pipeline is 8 sources"

4. --debug uses gst-top to print time and memory consuming elements, saves the

results as text and graph.

Open the pipeline_report.txt to view the full report showing all elements, your

report should be similar to this:

NOTE: When the debug flag is used and the app is running inside of a docker,

exit the app by tying Ctrl+C in order to save the results. (Due to docker X11

display communication issues)

Model

YOLOv5 is a modern object detection architecture that is based on the YOLOv3 meta-

architecture with CSPNet backbone. The YOLOv5 was released on 05/2020 with a very

efficient design and SoTA accuracy results on the COCO benchmark.

Hailo Tappas | User Guide

25/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

in this pipeline, wer'e using a specific variant of the YOLOv5 architecture - yolov5m that

stands for medium sized networks.

Pre trained and compiled yolov5m model stored as .hef file.

Resolution: 640x640x3

Full precision accuracy: 41.7mAP

Dataset: COCO val2017 https://cocodataset.org/#home

Enter the git project to read further: https://github.com/ultralytics/yolov5
Link to the

network yaml in Hailo Model Zoo - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov5m.yaml

Overview of the pipeline

The following elements are the structure of the pipeline:

rtspsrc makes a connection to an rtsp server and read the data. used as a src to

get the video stream from rtsp-cameras.

rtph264depay extracts h264 video from rtp packets.

vaapidecodebin video decoding and scaling - this element uses vaapi hardware

acceleration to improve the pipeline performace.
Video Acceleration API (VA-API)

is an open source API made by Intel that allows applications to use hardware

video acceleration capabilities, usually provided by the GPU. It is implemented by

libva library and combined with a hardware-specific driver.

In this pipeline, the bin is responsible for decoding h264 format and scaling the

frame to 640X640.
It contains the following elements:

vaapi<CODEC>dec is used to decode JPEG, MPEG-2, MPEG-4:2, H.264
AVC,

H.264 MVC, VP8, VP9, VC-1, WMV3, HEVC videos to VA surfaces (vaapi's

memory format),
depending on the actual value of 'CODEC' and the

underlying
hardware capabilities. This plugin is also able to implicitly

download the decoded surface to raw YUV buffers.

vaapipostproc is used to filter VA surfaces, for e.g. scaling,
deinterlacing,

noise reduction or sharpening. This plugin is also used to upload raw
YUV

pixels into VA surfaces.

vaapisink responsible for rendering VA surfaces to an X11 or Wayland

display (used in this pipeline by the fpsdisplaysink).

https://cocodataset.org/#home
https://github.com/ultralytics/yolov5
https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov5m.yaml

Hailo Tappas | User Guide

26/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

NOTE: In case your device does not suppport vaapi acceleration -

you should replace the vaapi elements in the pipeline with --

disable-vaapi argument.
this includes swapping decoder elements

and videosink elements with regular decodebin, videoscale (instead

of vappi's postproc) and autovideosink.

videoconvert converting the frame into RGB format

funnel takes multiple input sinks and outputs one source. an N-to-1 funnel that

attaches a streamid to each stream, can later be used to demux back into

separate streams. this lets you queue frames from multiple streams to send to

the hailo device one at a time.

Hailo Tappas | User Guide

27/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

hailonet Performs the inference on the Hailo-8 device - configures the chip with

the hef and starts hailo's inference process - sets streaming mode and sends the

buffers into the chip.
requires the following properties: hef-path - points to the

compiled yolov5m hef, qos that must be set to false - to disable frame drops, and

batch-size.
read more about hailonet

hailofilter performs given postprocess, chosen with the so-path property. in

this pipeline, two are encourporated to performe yolov5m postprocess and box

drawing.

NOTE: If multiple hailofilters are present and dependent on each other,

then `qos` must be disabled for each.

If there is only one hailofilter, then qos may be enabled
(although it is still recommended to disable).

streamiddemux a reverse to the funnel. It is a 1-to-N demuxer that splits a

serialized stream based on stream id to multiple outputs.

compositor composites pictures from multiple sources. handy for multi-

stream/tiling like applications, as it lets you input many streams and draw them

all together as a grid.

Hailo Tappas | User Guide

28/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

fpsdisplaysink outputs video into the screen, and displays the current and

average framerate.

NOTE: sync=false property in fpsdisplaysink element disables real-time

synchronization with the pipeline - it is mandatory on this case to reach the

best performance.

Hailo Tappas | User Guide

29/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Entire pipeline
?

pipeline0
Time: 0 ns

(0.0%)
CPU: 0.0%

GstFunnel
fun

Time: 1.25 s
(1.4%)

CPU: 1.5%

GstQueue
hailo_pre_infer_q_0

Time: 7.27 s
(8.2%)

CPU: 8.4%

GstHailoSend
hailosend0

Time: 20.3 s
(22.8%)

CPU: 23.5%

GstQueue
hailo_infer_q_0
Time: 849 ms

(1.0%)
CPU: 1.0%

GstHailorecv
hailorecv0

Time: 7.63 s
(8.6%)

CPU: 8.8%

GstQueue
hailo_postprocess0

Time: 491 ms
(0.6%)

CPU: 0.6%

GstHailoFilter
hailofilter0

Time: 4.79 s
(5.4%)

CPU: 5.6%

GstQueue
hailo_draw0

Time: 362 ms
(0.4%)

CPU: 0.4%

GstHailoFilter
hailofilter1

Time: 1.65 s
(1.9%)

CPU: 1.9%

GstStreamidDemux
sid

Time: 368 ms
(0.4%)

CPU: 0.4%

GstCompositor
comp

Time: 7.32 s
(8.2%)

CPU: 8.5%

GstFPSDisplaySink
hailo_display

Time: 0 ns
(0.0%)

CPU: 0.0%

GstVaapiSink
vaapisink0

Time: 1.90 s
(2.1%)

CPU: 2.2%

GstRTSPSrc
source_0

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpBin
manager

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpPtDemux
rtpptdemux0

Time: 88.1 ms
(0.1%)

CPU: 0.1%

GstRtpJitterBuffer
rtpjitterbuffer0

Time: 92.4 ms
(0.1%)

CPU: 0.1%

GstRtpSession
rtpsession0

Time: 158 ms
(0.2%)

CPU: 0.2%

GstRtpSsrcDemux
rtpssrcdemux0

Time: 226 ms
(0.3%)

CPU: 0.3%

GstRtpStorage
rtpstorage0

Time: 73.9 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc3

Time: 75.2 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc4

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSink
udpsink0

Time: 122 us
(0.0%)

CPU: 0.0%

GstFakeSrc
fakesrc0

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpH264Depay
rtph264depay0

Time: 170 ms
(0.2%)

CPU: 0.2%

GstQueue
hailo_preprocess_q_0

Time: 273 ms
(0.3%)

CPU: 0.3%

GstVaapiDecodeBin
vaapidecodebin0
Time: 0 ns

(0.0%)
CPU: 0.0%

GstVaapiDecode
vaapidecode0

Time: 528 ms
(0.6%)

CPU: 0.6%

GstQueue
vaapi-queue

Time: 156 ms
(0.2%)

CPU: 0.2%

GstCapsFilter
capsfilter8

Time: 109 ms
(0.1%)

CPU: 0.1%

GstVaapiPostproc
vaapipostproc0
Time: 518 ms

(0.6%)
CPU: 0.6%

GstVideoConvert
videoconvert0

Time: 2.12 s
(2.4%)

CPU: 2.5%

GstQueue
comp_q_0

Time: 19.6 ms
(0.0%)

CPU: 0.0%

GstRTSPSrc
source_1

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpBin
manager

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpPtDemux
rtpptdemux1

Time: 89.2 ms
(0.1%)

CPU: 0.1%

GstRtpJitterBuffer
rtpjitterbuffer1

Time: 84.8 ms
(0.1%)

CPU: 0.1%

GstRtpSession
rtpsession1

Time: 146 ms
(0.2%)

CPU: 0.2%

GstRtpSsrcDemux
rtpssrcdemux1

Time: 205 ms
(0.2%)

CPU: 0.2%GstRtpStorage
rtpstorage1

Time: 62.5 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc0

Time: 69.0 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc1

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSink
udpsink1

Time: 174 us
(0.0%)

CPU: 0.0%

GstFakeSrc
fakesrc1

Time: 0 ns
(0.0%)

CPU: 0.0%
GstRtpH264Depay

rtph264depay1
Time: 153 ms

(0.2%)
CPU: 0.2%

GstQueue
hailo_preprocess_q_1

Time: 247 ms
(0.3%)

CPU: 0.3%

GstVaapiDecodeBin
vaapidecodebin1
Time: 0 ns

(0.0%)
CPU: 0.0%

GstVaapiDecode
vaapidecode1

Time: 469 ms
(0.5%)

CPU: 0.5%

GstQueue
vaapi-queue

Time: 143 ms
(0.2%)

CPU: 0.2%

GstCapsFilter
capsfilter9

Time: 109 ms
(0.1%)

CPU: 0.1%

GstVaapiPostproc
vaapipostproc1
Time: 520 ms

(0.6%)
CPU: 0.6%

GstVideoConvert
videoconvert1

Time: 2.05 s
(2.3%)

CPU: 2.4%

GstQueue
comp_q_1

Time: 17.2 ms
(0.0%)

CPU: 0.0%

GstRTSPSrc
source_2

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSink
udpsink14

Time: 318 us
(0.0%)

CPU: 0.0%

GstFakeSrc
fakesrc7

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSink
udpsink15

Time: 1.74 ms
(0.0%)

CPU: 0.0%

GstUDPSrc
udpsrc17

Time: 68.7 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc18

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpBin
manager

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpPtDemux
rtpptdemux6

Time: 64.0 ms
(0.1%)

CPU: 0.1%

GstRtpJitterBuffer
rtpjitterbuffer6

Time: 62.8 ms
(0.1%)

CPU: 0.1%

GstRtpSession
rtpsession7

Time: 111 ms
(0.1%)

CPU: 0.1% GstRtpSsrcDemux
rtpssrcdemux7

Time: 197 ms
(0.2%)

CPU: 0.2%

GstRtpStorage
rtpstorage7

Time: 48.3 ms
(0.1%)

CPU: 0.1%
GstRtpH264Depay

rtph264depay2
Time: 119 ms

(0.1%)
CPU: 0.1%

GstQueue
hailo_preprocess_q_2

Time: 243 ms
(0.3%)

CPU: 0.3% GstVaapiDecodeBin
vaapidecodebin2
Time: 0 ns

(0.0%)
CPU: 0.0%

GstVaapiDecode
vaapidecode2

Time: 478 ms
(0.5%)

CPU: 0.6%

GstQueue
vaapi-queue

Time: 140 ms
(0.2%)

CPU: 0.2%

GstCapsFilter
capsfilter10

Time: 104 ms
(0.1%)

CPU: 0.1%

GstVaapiPostproc
vaapipostproc2
Time: 522 ms

(0.6%)
CPU: 0.6%

GstVideoConvert
videoconvert2

Time: 2.10 s
(2.4%)

CPU: 2.4%

GstQueue
comp_q_2

Time: 15.4 ms
(0.0%)

CPU: 0.0%

GstRTSPSrc
source_3

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpBin
manager

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpPtDemux
rtpptdemux2

Time: 124 ms
(0.1%)

CPU: 0.1%

GstRtpJitterBuffer
rtpjitterbuffer2

Time: 110 ms
(0.1%)

CPU: 0.1%

GstRtpSession
rtpsession2

Time: 187 ms
(0.2%)

CPU: 0.2%

GstRtpSsrcDemux
rtpssrcdemux2

Time: 246 ms
(0.3%)

CPU: 0.3%GstRtpStorage
rtpstorage2

Time: 92.0 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc6

Time: 67.9 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc7

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSink
udpsink4

Time: 168 us
(0.0%)

CPU: 0.0%

GstFakeSrc
fakesrc2

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpH264Depay
rtph264depay3

Time: 218 ms
(0.2%)

CPU: 0.3%

GstQueue
hailo_preprocess_q_3

Time: 244 ms
(0.3%)

CPU: 0.3%

GstVaapiDecodeBin
vaapidecodebin3
Time: 0 ns

(0.0%)
CPU: 0.0%

GstVaapiDecode
vaapidecode3

Time: 522 ms
(0.6%)

CPU: 0.6%

GstQueue
vaapi-queue

Time: 145 ms
(0.2%)

CPU: 0.2%

GstCapsFilter
capsfilter11

Time: 108 ms
(0.1%)

CPU: 0.1%

GstVaapiPostproc
vaapipostproc3
Time: 549 ms

(0.6%)
CPU: 0.6%

GstVideoConvert
videoconvert3

Time: 2.22 s
(2.5%)

CPU: 2.6%

GstQueue
comp_q_3

Time: 19.4 ms
(0.0%)

CPU: 0.0%

GstRTSPSrc
source_4

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpBin
manager

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpPtDemux
rtpptdemux4

Time: 91.5 ms
(0.1%)

CPU: 0.1%

GstRtpJitterBuffer
rtpjitterbuffer4

Time: 92.8 ms
(0.1%)

CPU: 0.1%

GstRtpSession
rtpsession4

Time: 159 ms
(0.2%)

CPU: 0.2%

GstRtpSsrcDemux
rtpssrcdemux4

Time: 223 ms
(0.3%)

CPU: 0.3%

GstRtpStorage
rtpstorage4

Time: 73.5 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc11

Time: 66.5 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc14

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSink
udpsink8

Time: 330 us
(0.0%)

CPU: 0.0%

GstFakeSrc
fakesrc4

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpH264Depay
rtph264depay4

Time: 165 ms
(0.2%)

CPU: 0.2%

GstQueue
hailo_preprocess_q_4

Time: 244 ms
(0.3%)

CPU: 0.3%

GstVaapiDecodeBin
vaapidecodebin4
Time: 0 ns

(0.0%)
CPU: 0.0%

GstVaapiDecode
vaapidecode4

Time: 534 ms
(0.6%)

CPU: 0.6%

GstQueue
vaapi-queue

Time: 141 ms
(0.2%)

CPU: 0.2%

GstCapsFilter
capsfilter12

Time: 107 ms
(0.1%)

CPU: 0.1%

GstVaapiPostproc
vaapipostproc4
Time: 531 ms

(0.6%)
CPU: 0.6%

GstVideoConvert
videoconvert4

Time: 2.17 s
(2.4%)

CPU: 2.5%

GstQueue
comp_q_4

Time: 16.4 ms
(0.0%)

CPU: 0.0%

GstRTSPSrc
source_5

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpBin
manager

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpPtDemux
rtpptdemux5

Time: 111 ms
(0.1%)

CPU: 0.1%
GstRtpJitterBuffer

rtpjitterbuffer5
Time: 105 ms

(0.1%)
CPU: 0.1%

GstRtpSession
rtpsession6

Time: 175 ms
(0.2%)

CPU: 0.2% GstRtpSsrcDemux
rtpssrcdemux6

Time: 238 ms
(0.3%)

CPU: 0.3%

GstRtpStorage
rtpstorage6

Time: 86.3 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc15

Time: 64.7 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc16

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSink
udpsink12

Time: 252 us
(0.0%)

CPU: 0.0%

GstFakeSrc
fakesrc6

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpH264Depay
rtph264depay5

Time: 185 ms
(0.2%)

CPU: 0.2%

GstQueue
hailo_preprocess_q_5

Time: 238 ms
(0.3%)

CPU: 0.3%

GstVaapiDecodeBin
vaapidecodebin5
Time: 0 ns

(0.0%)
CPU: 0.0%

GstVaapiDecode
vaapidecode5

Time: 470 ms
(0.5%)

CPU: 0.5%

GstQueue
vaapi-queue

Time: 139 ms
(0.2%)

CPU: 0.2%

GstCapsFilter
capsfilter13

Time: 104 ms
(0.1%)

CPU: 0.1%

GstVaapiPostproc
vaapipostproc5
Time: 500 ms

(0.6%)
CPU: 0.6%

GstVideoConvert
videoconvert5

Time: 2.08 s
(2.3%)

CPU: 2.4%

GstQueue
comp_q_5

Time: 18.2 ms
(0.0%)

CPU: 0.0%

GstRTSPSrc
source_6

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSrc
udpsrc10

Time: 65.7 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc13

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSink
udpsink10

Time: 282 us
(0.0%)

CPU: 0.0%

GstFakeSrc
fakesrc5

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSink
udpsink11

Time: 1.35 ms
(0.0%)

CPU: 0.0%

GstRtpBin
manager

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpPtDemux
rtpptdemux7

Time: 58.5 ms
(0.1%)

CPU: 0.1%
GstRtpJitterBuffer

rtpjitterbuffer7
Time: 62.4 ms

(0.1%)
CPU: 0.1%

GstRtpSession
rtpsession5

Time: 105 ms
(0.1%)

CPU: 0.1% GstRtpSsrcDemux
rtpssrcdemux5

Time: 182 ms
(0.2%)

CPU: 0.2%

GstRtpStorage
rtpstorage5

Time: 46.0 ms
(0.1%)

CPU: 0.1%

GstRtpH264Depay
rtph264depay6

Time: 105 ms
(0.1%)

CPU: 0.1%

GstQueue
hailo_preprocess_q_6

Time: 231 ms
(0.3%)

CPU: 0.3%

GstVaapiDecodeBin
vaapidecodebin6
Time: 0 ns

(0.0%)
CPU: 0.0%

GstVaapiDecode
vaapidecode6

Time: 353 ms
(0.4%)

CPU: 0.4%

GstQueue
vaapi-queue

Time: 129 ms
(0.1%)

CPU: 0.1%

GstCapsFilter
capsfilter14

Time: 96.6 ms
(0.1%)

CPU: 0.1%

GstVaapiPostproc
vaapipostproc6
Time: 383 ms

(0.4%)
CPU: 0.4%

GstVideoConvert
videoconvert6

Time: 1.49 s
(1.7%)

CPU: 1.7%

GstQueue
comp_q_6

Time: 15.0 ms
(0.0%)

CPU: 0.0%

GstRTSPSrc
source_7

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSink
udpsink6

Time: 872 us
(0.0%)

CPU: 0.0%

GstFakeSrc
fakesrc3

Time: 0 ns
(0.0%)

CPU: 0.0%

GstUDPSink
udpsink7

Time: 1.54 ms
(0.0%)

CPU: 0.0%

GstUDPSrc
udpsrc8

Time: 64.1 ms
(0.1%)

CPU: 0.1%

GstUDPSrc
udpsrc12

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpBin
manager

Time: 0 ns
(0.0%)

CPU: 0.0%

GstRtpPtDemux
rtpptdemux3

Time: 128 ms
(0.1%)

CPU: 0.1%

GstRtpJitterBuffer
rtpjitterbuffer3

Time: 116 ms
(0.1%)

CPU: 0.1%

GstRtpSession
rtpsession3

Time: 193 ms
(0.2%)

CPU: 0.2% GstRtpSsrcDemux
rtpssrcdemux3

Time: 244 ms
(0.3%)

CPU: 0.3%

GstRtpStorage
rtpstorage3

Time: 93.8 ms
(0.1%)

CPU: 0.1%

GstRtpH264Depay
rtph264depay7

Time: 202 ms
(0.2%)

CPU: 0.2%

GstQueue
hailo_preprocess_q_7

Time: 227 ms
(0.3%)

CPU: 0.3%

GstVaapiDecodeBin
vaapidecodebin7
Time: 0 ns

(0.0%)
CPU: 0.0%

GstVaapiDecode
vaapidecode7

Time: 361 ms
(0.4%)

CPU: 0.4%

GstQueue
vaapi-queue

Time: 130 ms
(0.1%)

CPU: 0.2%

GstCapsFilter
capsfilter15

Time: 96.5 ms
(0.1%)

CPU: 0.1%

GstVaapiPostproc
vaapipostproc7
Time: 400 ms

(0.5%)
CPU: 0.5%

GstVideoConvert
videoconvert7

Time: 1.54 s
(1.7%)

CPU: 1.8%

GstQueue
comp_q_7

Time: 16.0 ms
(0.0%)

CPU: 0.0%

GstCapsFilter
capsfilter0

Time: 31.6 ms
(0.0%)

CPU: 0.0%

GstCapsFilter
capsfilter1

Time: 31.7 ms
(0.0%)

CPU: 0.0%

GstCapsFilter
capsfilter2

Time: 32.1 ms
(0.0%)

CPU: 0.0%

GstCapsFilter
capsfilter3

Time: 35.7 ms
(0.0%)

CPU: 0.0%

GstCapsFilter
capsfilter4

Time: 33.3 ms
(0.0%)

CPU: 0.0%

GstCapsFilter
capsfilter5

Time: 33.0 ms
(0.0%)

CPU: 0.0%

GstCapsFilter
capsfilter6

Time: 24.8 ms
(0.0%)

CPU: 0.0%

GstCapsFilter
capsfilter7

Time: 25.2 ms
(0.0%)

CPU: 0.0%

21.6 GiB 18.4 GiB 18.4 GiB 18.4 GiB 18.4 GiB 18.4 GiB 18.4 GiB 18.4 GiB 18.4 GiB

1.65 GiB

2.59 GiB

2.29 GiB

2.73 GiB

2.49 GiB

2.73 GiB

1.61 GiB

2.27 GiB

13.1 GiB

5.53 MiB

5.53 MiB

1.48 KiB

504 B

5.53 MiB

5.53 MiB

504 B5.53 MiB5.53 MiB

504 B

1000 B

5.45 MiB

5.45 MiB 7.53 GiB 7.53 GiB 7.53 GiB 1.48 GiB

2.95 GiB

2.05 GiB

7.46 MiB

7.46 MiB

1.56 KiB

7.46 MiB

504 B

7.46 MiB

504 B

7.46 MiB

7.46 MiB

504 B

1000 B

7.23 MiB

7.23 MiB

7.36 GiB 7.36 GiB 7.36 GiB 1.44 GiB

2.89 GiB

1.92 GiB

1000 B

2.24 MiB

504 B 2.24 MiB2.24 MiB504 B

2.24 MiB

1.48 KiB

504 B

2.24 MiB2.24 MiB

2.18 MiB

2.18 MiB

7.53 GiB 7.53 GiB 7.53 GiB 1.48 GiB

2.95 GiB

1.34 GiB

11.2 MiB

11.2 MiB

1.48 KiB

11.2 MiB

504 B

11.2 MiB

504 B

11.2 MiB

11.2 MiB

504 B

1000 B

11.0 MiB
11.0 MiB

7.53 GiB 7.53 GiB 7.53 GiB 1.48 GiB
2.95 GiB

2.05 GiB

5.97 MiB5.97 MiB

504 B

1.56 KiB

5.97 MiB

504 B

5.97 MiB5.97 MiB5.97 MiB

504 B

1000 B

5.88 MiB

5.88 MiB
7.53 GiB 7.53 GiB 7.53 GiB

1.48 GiB

2.95 GiB

1.77 GiB

11.6 MiB

11.6 MiB

504 B

11.6 MiB

1.41 KiB

11.6 MiB

504 B11.6 MiB

11.6 MiB

504 B

1000 B

11.5 MiB

11.5 MiB
7.53 GiB 7.53 GiB 7.53 GiB

1.48 GiB

2.95 GiB

1.99 GiB

3.47 MiB

504 B

1000 B

3.47 MiB

3.47 MiB

504 B

3.47 MiB

1.48 KiB

3.47 MiB

504 B3.47 MiB

3.42 MiB

3.42 MiB

12.7 GiB 12.7 GiB 12.7 GiB

0.98 GiB

1.97 GiB

1.37 GiB

1000 B

16.5 MiB

504 B

16.5 MiB

16.5 MiB

504 B

1.48 KiB

16.5 MiB

16.5 MiB

504 B16.5 MiB

16.3 MiB

16.3 MiB

12.7 GiB 12.7 GiB 12.7 GiB

0.98 GiB

1.97 GiB

1.76 GiB

2.95 GiB

2.89 GiB

2.95 GiB

2.95 GiB

2.95 GiB

2.95 GiB

1.97 GiB

1.97 GiB

Hailo Tappas | User Guide

30/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Pose Estimation Pipeline

Overview:

hailo_pose_estimation.sh demonstrates human pose estimation on one video file

source and verifies Hailo’s configuration.
This is done by running a single-stream
pose estimation pipeline on top of GStreamer using the Hailo-8 device.

Options

./hailo_pose_estimation.sh [--input FILL-ME]

--input is an optional flag, a path to the video displayed (default is

detection.mp4).

--show-fps is an optional flag that enables printing FPS on screen.

--network Set network to use. choose from [centerpose, centerpose_faster,

centerpose_416], default is centerpose

--print-gst-launch is a flag that prints the ready gst-launch command without

running it"

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/pose_estimation

./hailo_pose_estimation.sh

The output should look like:

How it works

This section is optional and provides a drill-down into the implementation of the

pose_estimation app with a focus on explaining the GStreamer pipeline.
This section

Hailo Tappas | User Guide

31/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

uses centerpose_regnetx_1.6gf_fpn as an example network so network input width,

height, and hef name are set accordingly.

gst-launch-1.0 \

 filesrc location=$video_device ! decodebin ! videoconvert ! \

 videoscale ! video/x-raw,width=640,height=640,pixel-aspect-
ratio=1/1 ! \

 queue queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! \

 hailonet hef-path=$hef_path debug=False is-active=true qos=false
batch-size=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter function-name=yolov5 so-path=$POSTPROCESS_SO
qos=false debug=False ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False !
\

 videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Specifies the location of the video used, then decodes and converts to the

required format.

2. videoscale ! video/x-raw,pixel-aspect-ratio=1/1 ! \

Re-scale the video dimensions to fit the input of the network. In this case it is

rescaling the video to 640x640 with the caps negotiation of hailonet.

3. queue queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! \

Before sending the frames into the hailonet element, set a queue so no frames

are lost (Read more about queues here)

4. hailonet hef-path=$hef_path debug=False is-active=true
qos=false batch-size=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

32/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

5. hailofilter function-name=yolov5 so-path=$POSTPROCESS_SO
qos=false debug=False ! \

 queue name=hailo_draw0 leaky=no max-size-buffers=30 max-size-
bytes=0 max-size-time=0 ! \

 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False
! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Each hailofilter performs a given post-process. In this case the first performs

the centerpose post-process and the second performs box and skeleton drawing.

6. videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

NOTE: Additional details about the pipeline provided in further examples

Hailo Tappas | User Guide

33/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Segmentation Pipelines

Overview

semantic_segmentation.sh demonstrates semantic segmentation on one video file

source.
This is done by running a single-stream object semantic segmentation
pipeline on top of GStreamer using the Hailo-8 device.

Options

semantic_segmentation.sh demonstrates semantic segmentation on one video file

source.
This is done by running a single-stream object semantic segmentation
pipeline on top of GStreamer using the Hailo-8 device.

Options

./semantic_segmentation.sh [--input FILL-ME]

--input is an optional flag, a path to the video displayed (default is

full_mov_slow.mp4).

--print-gst-launch is a flag that prints the ready gst-launch command without

running it

--show-fps is an optional flag that enables printing FPS on screen

Supported Network

'fcn8_resnet_v1_18' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/fcn8_resnet_v1_18

.yaml

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/segmentation

./semantic_segmentation.sh

The output should look like:

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/fcn8_resnet_v1_18.yaml

Hailo Tappas | User Guide

34/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

How it works

This section is optional and provides a drill-down into the implementation of the

semantic segmentation app with a focus on explaining the GStreamer pipeline.
This

section uses resnet18_fcn8_fhd as an example network so network input width,

height, hef name, are set accordingly.

Model

fcn8_resnet_v1_18 in resolution of 1920x1024x3.

Numeric accuracy 65.18mIOU.

Pre trained on cityscapes using GlounCV and a resnet-18-
FCN8 architecture.

gst-launch-1.0 \

 filesrc location=$video_device ! decodebin ! \

 videoscale ! video/x-raw,pixel-aspect-ratio=1/1 ! videoconvert !
\

 queue leaky=no max-size-buffers=13 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path debug=False is-active=true qos=false
batch-size=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False !
\

 videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Hailo Tappas | User Guide

35/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Specifies the location of the video used, then decodes and converts to the

required format.

2. videoscale ! video/x-raw,pixel-aspect-ratio=1/1 ! \

Re-scales the video dimensions to fit the input of the network. In this case it is

rescaling the video to 1920x1024 with the caps negotiation of hailonet.

3. queue leaky=no max-size-buffers=13 max-size-bytes=0 max-size-
time=0 ! \

Before sending the frames into hailonet element, set a queue so no frames are

lost (Read more about queues here)

4. hailonet hef-path=$hef_path debug=False is-active=true
qos=false batch-size=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

5. hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False
! \

Performs a given draw-process, in this case, performs resnet18_fcn8_fhd
semantic segmentation drawing per pixel.

6. videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

NOTE: Additional details about the pipeline provided in further examples

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

36/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Facial Landmarks Pipeline

Overview:

facial_landmarks.sh demonstrates facial landmarking on one video file source and

verifies Hailo’s configuration.
This is done by running a single-stream facial
landmarking pipeline on top of GStreamer using the Hailo-8 device.

Options

./facial_landmarks.sh

--input is an optional flag, a path to the video displayed (default is

faces_120_120.mp4).

--show-fps is an optional flag that enables printing FPS on screen.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it"

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/facial_landmarks/

./facial_landmarks.sh

The output should look like:

How it works

This section is optional and provides a drill-down into the implementation of the face

landmarks app with a focus on explaining the GStreamer pipeline.
This setction uses

tddfa_mobilenet_v1 as an example network so network input width, height, hef

name, are set accordingly.

gst-launch-1.0 \

 $source_element ! decodebin ! \

 videoscale ! video/x-raw,pixel-aspect-ratio=1/1 ! videoconvert !
\

 queue leaky=no max_size_buffers=30 max-size-bytes=0 max-size-

Hailo Tappas | User Guide

37/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

time=0 ! \
 hailonet hef-path=$hef_path debug=False is-active=true qos=false
! \

 queue leaky=no max_size_buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$POSTPROCESS_SO qos=false debug=False ! \

 queue leaky=no max_size_buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False !
\

 videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Specifies the location of the video used, then decodes and converts to the

required format.

2. videoscale ! video/x-raw,pixel-aspect-ratio=1/1 ! \

Re-scales the video dimensions to fit the input of the network. In this case it is

rescaling the video to 120x120 with the caps negotiation of hailonet.

3. queue leaky=no max_size_buffers=30 max-size-bytes=0 max-size-
time=0 ! \

)Before sending the frames into hailonet element, set a queue so no frame are

lost (Read more about queues here

4. hailonet hef-path=$hef_path debug=False is-active=true
qos=false ! \

 queue leaky=no max_size_buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

5. hailofilter so-path=$POSTPROCESS_SO qos=false debug=False ! \

 queue leaky=no max_size_buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False
! \

Performs a given post-process, in that case, performs tddfa_mobilenet_v1 post-

process and then landmarks drawing.

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

38/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

6. videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element.

NOTE: Additional details about the pipeline provided in further examples

Hailo Tappas | User Guide

39/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Face Detection Pipeline

Overview:

The purpose of face_detection.sh is to demostrate face detection on one video file

source and to verify Hailo’s configuration.
This is done by running a single-stream
face detection pipeline on top of GStreamer using the Hailo-8 device.

Options

/face_detection.sh

--netowrk is a flag that sets which network to use. choose from [lightface,

retinaface], default is lightface.
this will set the hef file to use, the hailofilter
function to use, and the scales of the frame to match the width/height input

dimensions of the network.

--input is an optional flag, a path to the video displayed (default is

face_detection.mp4).

--show-fps is an optional flag that enables printing FPS on screen.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it"

Supported Networks

'retinaface' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/retinaface_mobile

net_v1.yaml

'lightface' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/lightface_slim.yam

l

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/face_detection/

./face_detection.sh

The output should look like:

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/retinaface_mobilenet_v1.yaml
https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/lightface_slim.yaml

Hailo Tappas | User Guide

40/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

How it works

This section is optional and provides a drill-down into the implementation of the face

detection app with a focus on explaining the GStreamer pipeline.
This setction uses

lightface_slim as an example network so network input width, height, hef name, are

set accordingly.

gst-launch-1.0 \

 filesrc location=$input_source ! decodebin ! \

 videoscale ! video/x-raw, pixel-aspect-ratio=1/1 ! videoconvert !
\

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path debug=False is-active=true qos=false
! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter function-name=$network_name so-path=$POSTPROCESS_SO
qos=false debug=False ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False !
\

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=false text-overlay=false ${additonal_parameters}

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Specifying the location of the video used, then decode and convert to the

required format.

Hailo Tappas | User Guide

41/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

2. videoscale ! video/x-raw,pixel-aspect-ratio=1/1 ! \

Re-scale the video dimensions to fit the input of the network. In this case it is

rescaling the video to 320x240 with the caps negotiation of hailonet. #

3. queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Before sending the frames into hailonet element set a queue so no frame would

be lost (Read more about queue here)

4. hailonet hef-path=$hef_path debug=False is-active=true
qos=false ! \

 queue leaky=no max_size_buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Sending and receiving the data, separated by a non-leaky queue.

NOTE: qos must be disabled for hailonet since dropping frames may cause

these elements to run out of alignment.

5. hailofilter so-path=$POSTPROCESS_SO qos=false debug=False ! \

 queue leaky=no max_size_buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False
! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs given post-process, in that case, performers lightface_slim post-process

and detection box drawing

6. videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true

Apply the final convert to let GStreamer find out the format required by the

fpsdisplaysink element

NOTE: Additional details about the pipeline provided in further examples

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

42/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Face Detection and Facial

Landmarking Pipeline

face_detection_and_landmarks.sh demonstrates face detection and facial

landmarking on one video file source.
This is done by running a face detection pipeline

(infer + postprocessing), cropping and scaling all detected faces, and sending them

into z 2nd network of facial landmarking. All resulting detections and landmarks are

then aggregated and drawn on the original frame. The two networks are running using

one Hailo-8 device with two hailonet elements.

Options

./face_detection_and_landmarks.sh [OPTIONS] [-i INPUT_PATH]

-i --input is an optional flag, a path to the video/camera displayed.

--print-gst-launch prints the ready gst-launch command without running it

--show-fps optional - enables printing FPS on screen

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/cascading_networks

./face_detection_and_landmarks.sh

The output should look like:

Model

lightface_slim in resolution of 320X240X3 - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/lightface_slim.yam

l.

tddfa_mobilenet_v1 in resolution of 120X120X3 - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/tddfa_mobilenet_v

1.yaml.

How it works

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/lightface_slim.yaml
https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/tddfa_mobilenet_v1.yaml

Hailo Tappas | User Guide

43/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

This section is optional and provides a drill-down into the implementation of the app

with a focus on explaining the `GStreamer` pipeline.
This section uses `lightface_slim`

as an example network so network input width, height, hef name, are set accordingly.

FACE_DETECTION_PIPELINE="videoscale qos=false ! \

 queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-
time=0 ! \
 hailonet net-
name=joined_lightface_slim_tddfa_mobilenet_v1/lightface_slim \

 hef-path=$hef_path is-active=true qos=false ! \

 queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$detection_postprocess_so function-
name=lightface qos=false ! \

 queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-
time=0"

FACIAL_LANDMARKS_PIPELINE="queue leaky=no max-size-buffers=3 max-
size-bytes=0 max-size-time=0 ! \

 hailonet net-
name=joined_lightface_slim_tddfa_mobilenet_v1/tddfa_mobilenet_v1 \

 hef-path=$hef_path is-active=true qos=false ! \

 queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter function-name=facial_landmarks_merged so-
path=$landmarks_postprocess_so qos=false ! \

 queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-
time=0"

gst-launch-1.0 \

 $source_element ! \

 tee name=t hailomuxer name=hmux \

 t. ! queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-
time=0 ! hmux. \

 t. ! $FACE_DETECTION_PIPELINE ! hmux. \

 hmux. ! queue leaky=no max-size-buffers=3 max-size-bytes=0 max-
size-time=0 ! \

 hailocropper internal-offset=$internal_offset name=cropper
hailoaggregator name=agg \

 cropper. ! queue leaky=no max-size-buffers=3 max-size-bytes=0
max-size-time=0 ! agg. \

Hailo Tappas | User Guide

44/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 cropper. ! $FACIAL_LANDMARKS_PIPELINE ! agg. \

 agg. ! queue leaky=no max-size-buffers=3 max-size-bytes=0 max-
size-time=0 ! \

 hailofilter so-path=$landmarks_draw_so qos=false ! \

 queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-
time=0 ! videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=false text-overlay=false ${additonal_parameters}

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Specifies the location of the video used, then decodes and converts to the

required format.

2. tee name=t hailomuxer name=hmux

Split into two threads - one for doing face detection, the other one for getting the

original frame.
We merge those 2 threads back by using hailomuxer, which takes

the frame from it's first sink and adds the metadata from the other sink

3. t. ! queue leaky=no max-size-buffers=3 max-size-bytes=0 max-
size-time=0 ! hmux. \

The first thread, only passes the original frame.

4. t. ! $FACE_DETECTION_PIPELINE ! hmux. \

The second thread performs the face detection pipeline where

FACE_DETECTION_PIPELINE is:

videoscale qos=false ! \

Scales the picture to a resolution negotiated with the hailonet down the

pipeline, according to the needed resolution by the hef file.

queue leaky=no max-size-buffers=3 max-size-bytes=0 max-
size-time=0 ! \

Before sending the frames into hailonet element, set a queue so no

frames are lost (Read more about queues here)

hailonet hef-path=$hef_path debug=False is-active=true net-
name=joined_lightface_slim_tddfa_mobilenet_v1/lightface_sli
m qos=false batch-size=1

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

45/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

queue leaky=no max-size-buffers=3 max-size-bytes=0 max-
size-time=0 ! \

Performs the inference on the Hailo-8 device.

hailofilter so-path=$detection_postprocess_so qos=false
debug=False ! \

queue leaky=no max-size-buffers=3 max-size-bytes=0 max-
size-time=0 ! \

Performs a given post-process, in this case, performs lightface_slim face

detection post-processing.

5. hmux. ! queue leaky=no max-size-buffers=3 max-size-bytes=0 max-
size-time=0 ! \

hailocropper internal-offset=$internal_offset name=cropper
hailoaggregator name=agg \

links the hailomuxer to a queue and defines the cascading network elements

hailocropper and hailoaggregator.
hailocropper splits the pipeline into 2 threads,

the first thread passes the original frame, the other thread passes the croppes of

the original frame created by hailocropper according to the detections added to

the buffer by prior hailofilter post-processing, the buffers are also scaled to the

following hailonet, done by caps negotiation.
The hailoaggregator gets the

original frame and then knows to wait for all related cropped buffers and add all

related metadata on the original frame, and send it forward.

6. cropper. ! queue leaky=no max-size-buffers=3 max-size-bytes=0
max-size-time=0 ! agg. \

The first part of the cascading network pipeline, passes the original frame on the

bypass pads to hailoaggregator.

7. cropper. ! $FACIAL_LANDMARKS_PIPELINE ! agg. \

The second part of the cascading network pipeline, performs a second network

on all detections, which are cropped and scaled to the needed resolution by the

HEF in the hailonet. FACIAL_LANDMARKS_PIPELINE consists of:

queue leaky=no max-size-buffers=3 max-size-bytes=0 max-
size-time=0 ! \

Before sending the frames into the hailonet element, set a queue so no

frames are lost (Read more about queues here)

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

46/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

hailonet net-
name=joined_lightface_slim_tddfa_mobilenet_v1/tddfa_mobilen
et_v1 \

hef-path=$hef_path is-active=true qos=false ! \

Performs inference on the Hailo-8 device.

hailofilter function-name=facial_landmarks_merged so-
path=$landmarks_postprocess_so qos=false ! \

queue leaky=no max-size-buffers=3 max-size-bytes=0 max-
size-time=0

Performs a given post-process, in this case, performs tddfa_mobilenet_v1
facial landmarks post-processing.

8. agg. ! queue leaky=no max-size-buffers=3 max-size-bytes=0 max-
size-time=0 ! \

hailofilter so-path=$landmarks_draw_so qos=false ! \

Aggregates all detected faces with thier landmarks on the original frame, and

draws them over the frame using the hailofilter with specific drawing function.

9. queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-
time=0 ! videoconvert ! \

fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=false text-overlay=false

Display the final image using fpsdisplaysink.

NOTE: Additional details about the pipeline provided in further examples

Hailo Tappas | User Guide

47/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Tiling Pipeline

Single Scale Tiling

Single scale tiling FHD Gstreamer pipeline demonstrates splitting each frame into

several tiles which are processed independently by hailonet element.
This method is

especially effective for detecting small objects in high-resolution frames.
This process

is separated into 4 elements -

hailotilecropper which splits the frame into tiles, by seperating the frame into

rows and columns
(given as parameters to the element).

hailonet which performs an inference on each frame on the Hailo8 device.

hailofilter which performs the postprocess - parses the tensor output to

detections.

hailotileaggregator which aggregates the cropped tiles and stitches them

back to the original resolution.

Model

ssd_mobilenet_v1_visdrone in resolution of 300X300 - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/ssd_mobilenet_v1_

visdrone.yaml.

The VisDrone dataset consists of only small objects which we can assume are always

confined within an single tile. As such it is better suited for running single-scale tiling

with little overlap and without additional filtering.

Options

./tiling.sh [OPTIONS] [-i INPUT_PATH]

-i --input is an optional flag, a path to the video file displayed.

--print-gst-launch prints the ready gst-launch command without running it

--show-fps optional - enables printing FPS on screen

--tiles-x-axis optional - set number of tiles along x axis (columns)

--tiles-y-axis optional - set number of tiles along y axis (rows)

--overlap-x-axis optional - set overlap in percentage between tiles along x

axis (columns)

--overlap-y-axis optional - set overlap in percentage between tiles along y

axis (rows)

--iou-threshold optional - set iou threshold for NMS.

--sync-pipeline optional - set pipeline to sync to video file timing.

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/tiling

./tiling.sh

The output should look like:

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/ssd_mobilenet_v1_visdrone.yaml

Hailo Tappas | User Guide

48/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

How it works

Hailo Tappas | User Guide

49/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

filesrc location=$input_source name=src_0 ! decodebin ! videoconvert
qos=false

filesrc - source of the pipeline reads the video file and decodes it.

TILE_CROPPER_ELEMENT="hailotilecropper internal-
offset=$internal_offset name=cropper \

tiles-along-x-axis=$tiles_along_x_axis tiles-along-y-
axis=$tiles_along_y_axis overlap-x-axis=$overlap_x_axis overlap-y-
axis=$overlap_y_axis"

$TILE_CROPPER_ELEMENT hailotileaggregator iou-
threshold=$iou_threshold name=agg \

cropper. ! queue leaky=no max-size-buffers=3 max-size-bytes=0 max-
size-time=0 ! agg. \

cropper. ! $DETECTION_PIPELINE ! agg. \

hailotilecropper splits the pipeline into 2 threads, the first thread passes the original

frame, the other thread passes the crops of the original frame created by

hailotilecropper according to given tiles number per x/y axis and overlap

parameters.
The buffers are also scaled to the following hailonet, done by caps

negotiation.
The hailotileaggregator gets the original frame and then knows to wait

Hailo Tappas | User Guide

50/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

for all related cropped buffers and add all related metadata on the original frame,

sending everything together once aggregated.
It also performs NMS process to merge

detections on overlap tiles.

DETECTION_PIPELINE="\

hailonet hef-path=$hef_path device-id=$hailo_bus_id is-active=true
qos=false batch-size=1 ! \

queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-time=0 !
\

hailofilter2 function-name=$postprocess_func_name so-
path=$detection_postprocess_so qos=false ! \

queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-time=0"

focusing on the detection part:
hailonet performs inference on the Hailo-8 device

running mobilenet_v1_visdrone.hef for each tile crop.
hailofilter performs the

mobilenet postprocess and creates the detection objects to pass through the pipeline.

agg. ! queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-
time=0 ! \
hailooverlay qos=false ! \

hailotileaggregator sends the frame forward into the hailooverlay which draws

the detections over the frame.

queue leaky=no max-size-buffers=3 max-size-bytes=0 max-size-time=0 !
videoconvert ! \

fpsdisplaysink video-sink=xvimagesink name=hailo_display

Pipeline ends in the sink to the display.

Multi Scale Tiling

Multi-scale tiling FHD Gstreamer pipeline demonstrates a case where the video and the

training dataset includes objects in different sizes. Dividing the frame to small tiles

might miss large objects or â€œcut" them to small objects.
The solution is to split each

frame into number of scales (layers) each includes several tiles.

Multi-scale tiling strategy also allows us to filter the correct detection over several

scales.
For example we use 3 sets of tiles at 3 different scales:

Large scale, one tile to cover the entire frame (1x1)

Medium scale dividing the frame to 2x2 tiles.

Small scale dividing the frame to 3x3 tiles.

In this mode we use 1 + 4 + 9 = 14 tiles for each frame.
We can simplify the process

by highliting the main tasks:
crop -> inference -> post-process -> aggregate â†’

remove exceeded boxes â†’ remove large landscape â†’ perform NMS

Model

Hailo Tappas | User Guide

51/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

mobilenet_ssd in resolution of 300X300X3. https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/ssd_mobilenet_v1.

yaml

Options

./multi_scale_tiling.sh [OPTIONS] [-i INPUT_PATH]

-i --input is an optional flag, a path to the video file displayed.

--print-gst-launch prints the ready gst-launch command without running it

--show-fps optional - enables printing FPS on screen

--tiles-x-axis optional - set number of tiles along x axis (columns)

--tiles-y-axis optional - set number of tiles along y axis (rows)

--overlap-x-axis optional - set overlap in percentage between tiles along x

axis (columns)

--overlap-y-axis optional - set overlap in percentage between tiles along y

axis (rows)

--iou-threshold optional - set iou threshold for NMS.

--border-threshold optional - set border threshold to Remove tile's exceeded

objects.

--scale-level optional - set scales (layers of tiles) in addition to the main layer.

1: [(1 X 1)] 2: [(1 X 1), (2 X 2)] 3: [(1 X 1), (2 X 2), (3 X 3)]]'

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/tiling

./multi_scale_tiling.sh

The output should look like:

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/ssd_mobilenet_v1.yaml

Hailo Tappas | User Guide

52/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

How it works

As multi scale tiling is almost equal to single scale i will mention the differences:

TILE_CROPPER_ELEMENT="hailotilecropper internal-
offset=$internal_offset name=cropper tiling-mode=1 scale-
level=$scale_level

hailotilecropper sets tiling-mode to 1 (0 - single-scale, 1 - multi-scale) and scale-
level to define what is the structure of scales/layers in addition to the main scale.

hailonet hef-path is mobilenet_ssd which is training dataset includes objects in

different sizes.

 hailotileaggregator iou-threshold=$iou_threshold border-
threshold=$border_threshold name=agg

hailotileaggregator sets border-threshold used in remove tile's exceeded objects

process.

Hailo Tappas | User Guide

53/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Classification Pipeline

Overview

The purpose of classification.sh is to demostrate classification on one video file

source.
This is done by running a single-stream object classification pipeline
on top of GStreamer using the Hailo-8 device.

Options

./classification.sh [--input FILL-ME]

--input is an optional flag, a path to the video displayed (default is

classification_movie.mp4).

--show-fps is a flag that prints the pipeline's fps to the screen.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it.

Supported Networks:

'resnet_v1_50' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/resnet_v1_50.yaml

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/classification

./classification.sh

How it works

This section is optional and provides a drill-down into the implementation of the

classification app with a focus on explaining the GStreamer pipeline.
This section

uses resnet_v1_50 as an example network so network input width, height, and hef

name are set accordingly.

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/resnet_v1_50.yaml

Hailo Tappas | User Guide

54/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

gst-launch-1.0 \

 filesrc location=$input_source ! decodebin ! videoconvert ! \

 videoscale ! video/x-raw, pixel-aspect-ratio=1/1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path debug=False is-active=true qos=false
! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$POSTPROCESS_SO qos=false debug=False ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailooverlay qos=false ! \

 videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}"

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Specifies the location of the video used, then decode and convert to the required

format.

2. videoscale ! video/x-raw,pixel-aspect-ratio=1/1 ! \

Re-scale the video dimensions to fit the input of the network. In this case it is

rescaling the video to 112X112 with the caps negotiation of hailonet. hailonet
Extracts the needed resolution from the HEF file during the caps negotiation, and

makes sure that the needed resolution is passed from previous elements.

3. queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Before sending the frames into hailonet element set a queue so no frames are

lost (Read more about queues here)

4. hailonet hef-path=$hef_path debug=False is-active=true
qos=false ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

5. hailofilter2 so-path=$POSTPROCESS_SO qos=false debug=False ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

55/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Performs a given post-process, in this case, performs resnet_v1_50 classification

post-process, which is mainly doing top1 on the inference output.

6. hailooverlay qos=false ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs given draw-process, in that case, performs drawing the top1 class name

over the image.

7. videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}"

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element.

Hailo Tappas | User Guide

56/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Multi-Stream and Multi-Device

Pipeline

Overview

This GStreamer pipeline demonstrates object detection on 8 camera streams over

RTSP protocol.
This pipeline also demostrates using two hailo8 devices in parallel.

All the streams are processed in parallel through the decode and scale phases, and

enter the Hailo devices frame by frame.
Each hailo device is in charge of one inference

task (one for yolov5 and the other for centerpose)

Afterwards postprocess and drawing phases add the classified object and bounding

boxes to each frame.

The last step is to match each frame back to its respective stream and output all of

them to the display.

Real Time Streaming Protocol (RTSP) is a network control protocol designed for

use in entertainment and communications systems to control streaming media servers.

The protocol is used for establishing and controlling media sessions between endpoint.

Prerequisites

TensorPC

Ubuntu 18.04

RTSP Cameras, We recommend using: AXIS M10 Network Cameras

Two Hailo-8 devices connected via PCIe

Preparations

1. Before running, configuration of the RTSP camera sources is required.
Open the

rtsp_detection_and_pose_estimation.sh in edit mode with your preffered

editor.
Configure the eight sources to match your own cameras.

readonly SRC_0="rtsp://<ip address>/?h264x=4 user-id=<username> user-
pw=<password>"

readonly SRC_1="rtsp://<ip address>/?h264x=4 user-id=<username> user-
pw=<password>"

etc..

Run the pipeline

./rtsp_detection_and_pose_estimation.sh

1. --show-fps prints the fps to the output.

https://www.axis.com/products/axis-m1045-lw

Hailo Tappas | User Guide

57/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

2. --disable-vaapi disables the vaapi accelerator usage. This replaces decoder

elements and videosink elements from vaapi to decodebin, videoscale and

autovideosink.

3. --num-of-sources sets the number of rtsp sources to use by given input. The

default and recommended value in this pipeline is 8 sources.

4. --debug uses gst-top to print time and memory consuming elements, saves the

results as text and graph.

Open the pipeline_report.txt to view the full report showing all elements. Your

report should be similar to this:

Hailo Tappas | User Guide

58/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

NOTE: When the debug flag is used and the app is running inside of a docker,

exit the app by tying Ctrl+C in order to save the results. (Due to docker X11

display communication issues)

Hailo Tappas | User Guide

59/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Detection and Depth Estimation -

networks switch App

Overview:

detection_and_depth_estimation_networks_switch demonstrates network switch

between two networks: Detection network and Depth estimation network on one video

source using one Hailo-8 device.
The switch is done every frame, so all frames are

inferred by both networks.
This is a C++ executable that runs a GStreamer application

with extra logic applied through probes

Options

./detection_and_depth_estimation_networks_switch [--input FILL-ME --
show-fps]

--input is an optional flag, a path to the video displayed (default is

instance_segmentation.mp4).

--show-fps is an optional flag that enables printing FPS on screen.

Run

cd
$TAPPAS_WORKSPACE/apps/gstreamer/x86/network_switch/detection_and_dep
th_estimation_networks_switch

The output should look like:

How the application works

This section explains the network switch.
The app builds a gstreamer pipeline (that is

explained below) and modifies the is-active property of its hailonet elements. This is

done by applying buffer-probe callbacks on the input pad (sink pad) of each hailonet

element. The callbacks perform network switching by blocking a hailonet element

when it is time to switch: turning off one hailonet and turning on the other. Before

Hailo Tappas | User Guide

60/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

turning a hailonet element on, it has to flush the buffers out of the element, this is

done by sending the flush signal. read more about hailonet

How the pipeline works

This section is optional and provides a drill-down into the implementation of the

Detection and Depth Estimation networks switch app with a focus on explaining

the GStreamer pipeline.

Pipeline diagram

The following elements are the structure of the pipeline:

filesrc reads data from a file in the local file system.

decodebin constructs a decoding sub-pipeline using available decoders and

demuxers

videoconvert converts the frame into RGB format.

tee splits data to multiple pads. After this, the pipeline splits into two branches.

branch 1 detection

videoscale resizes a video frame to the input size of hailonet.

identity dummy element that passes incoming data through

unmodified. In this pipeline it is used for catching EOS events before

hailonet 1.

hailonet Performs the inference on the Hailo-8 device.
Requires the

is-active property that controls whether this element should be

active. In case there are two hailonets in a pipeline and each one uses

a different hef-file (like in this case) they can't be active at the same

time, so when initiallizing the pipeline this instance of hailonet is set

to is-active=false and the other one is set to true.

This intance of hailonet performs yolov5s network inferencefor

detection.read more about hailonet

hailofilter performs the given postprocess, chosen with the so-
path property. This instance is in charge of yolo post processing.

hailofilter this instance is in charge of the yolo drawing process.

videoconvert converts the frame into negotiated format.

fpsdisplaysink outputs video onto the screen, and displays the

current and average framerate.

NOTE: sync=false property in fpsdisplaysink element

disables real-time synchronization within the pipeline - it is

mandatory in this case to reach the best performance.

Hailo Tappas | User Guide

61/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

branch 2 depth estimation

aspectratiocrop crops video frames to specified ratio. If it's not

included in the pipeline then padding is added to the frames and this

behavior is unwanted in case of depth estimation.

videoscale same as in branch 1

identity dummy element that passes incoming data through

unmodified. In this pipeline it is used for catching EOS events before

hailonet 2.

hailonet this intance of hailonet performs fast-depth network

inference for depth estimation. When initiallizing the pipeline this

instance of hailonet is set to is-active=true.

hailofilter this instance of hailofilter is in charge of depth-

estimation post processing and drawing.

videoconvert same as in branch 1

fpsdisplaysink same as in branch 1

NOTE: queue elements were not presented for clearness. Queue positions can be

observed here:

?

pipeline0
Time: 0 ns

(0.0%)
CPU: 0.0%

GstFileSrc
src_0

Time: 8.40 ms
(0.2%)

CPU: 0.1%

GstDecodeBin
decodebin0

Time: 0 ns
(0.0%)

CPU: 0.0%

GstMultiQueue
multiqueue0

Time: 5.01 ms
(0.1%)

CPU: 0.1%

GstH264Parse
h264parse0

Time: 15.2 ms
(0.4%)

CPU: 0.2%

GstCapsFilter
capsfilter0

Time: 45.7 ms
(1.2%)

CPU: 0.7%

avdec_h264
avdec_h264-0
Time: 150 ms

(3.9%)
CPU: 2.3%

GstTypeFindElement
typefind

Time: 2.00 ms
(0.1%)

CPU: 0.0%

GstQTDemux
qtdemux0

Time: 10.7 ms
(0.3%)

CPU: 0.2%

GstVideoConvert
videoconvert0

Time: 558 ms
(14.6%)

CPU: 8.4%

GstQueue
queue0

Time: 5.57 ms
(0.1%)

CPU: 0.1%

GstTee
t

Time: 434 ms
(11.3%)

CPU: 6.5%

GstVideoScale
videoscale0

Time: 419 ms
(10.9%)

CPU: 6.3%

GstQueue
queue1

Time: 6.82 ms
(0.2%)

CPU: 0.1%

GstIdentity
identity_1

Time: 3.34 ms
(0.1%)

CPU: 0.1%

GstQueue
queue2

Time: 5.77 ms
(0.2%)

CPU: 0.1%

GstHailoNet
hailonet_1

Time: 0 ns
(0.0%)

CPU: 0.0%

GstHailoSend
hailosend

Time: 255 ms
(6.6%)

CPU: 3.8%

GstQueue
hailo_infer_q_0
Time: 4.82 ms

(0.1%)
CPU: 0.1%

GstHailoRecv
hailorecv

Time: 43.6 ms
(1.1%)

CPU: 0.7%

GstQueue
queue3

Time: 5.66 ms
(0.1%)

CPU: 0.1%

GstHailoFilter
hailofilter0

Time: 82.5 ms
(2.2%)

CPU: 1.2%

GstQueue
queue4

Time: 3.19 ms
(0.1%)

CPU: 0.0%

GstHailoFilter
hailofilter1

Time: 69.2 ms
(1.8%)

CPU: 1.0%

GstQueue
queue5

Time: 3.43 ms
(0.1%)

CPU: 0.1%

GstVideoConvert
videoconvert1

Time: 231 ms
(6.0%)

CPU: 3.5%

GstQueue
queue6

Time: 6.43 ms
(0.2%)

CPU: 0.1%

GstFPSDisplaySink
hailo_display_1

Time: 0 ns
(0.0%)

CPU: 0.0%

GstXImageSink
ximagesink0

Time: 19.2 ms
(0.5%)

CPU: 0.3%

GstAspectRatioCrop
aspectratiocrop0
Time: 0 ns

(0.0%)
CPU: 0.0%

GstVideoCrop
videocrop0

Time: 99.8 ms
(2.6%)

CPU: 1.5%

GstQueue
queue7

Time: 4.69 ms
(0.1%)

CPU: 0.1%

GstVideoScale
videoscale1

Time: 131 ms
(3.4%)

CPU: 2.0%

GstQueue
queue8

Time: 3.48 ms
(0.1%)

CPU: 0.1%

GstIdentity
identity_2

Time: 3.36 ms
(0.1%)

CPU: 0.1%

GstQueue
queue9

Time: 6.24 ms
(0.2%)

CPU: 0.1%

GstHailoNet
hailonet_2

Time: 0 ns
(0.0%)

CPU: 0.0%

GstHailoSend
hailosend

Time: 237 ms
(6.2%)

CPU: 3.6%

GstQueue
hailo_infer_q_0
Time: 5.27 ms

(0.1%)
CPU: 0.1%

GstHailoRecv
hailorecv

Time: 20.1 ms
(0.5%)

CPU: 0.3%

GstQueue
queue10

Time: 5.53 ms
(0.1%)

CPU: 0.1%

GstHailoFilter
hailofilter2

Time: 853 ms
(22.3%)

CPU: 12.8%

GstQueue
queue11

Time: 4.45 ms
(0.1%)

CPU: 0.1%

GstVideoConvert
videoconvert2

Time: 35.3 ms
(0.9%)

CPU: 0.5%

GstQueue
hailo_display_q_1

Time: 7.12 ms
(0.2%)

CPU: 0.1%

GstFPSDisplaySink
hailo_display_2

Time: 0 ns
(0.0%)

CPU: 0.0%

GstXImageSink
ximagesink1

Time: 19.6 ms
(0.5%)

CPU: 0.3%

3.94 MiB 3.82 MiB 3.82 MiB 3.82 MiB 291 MiB3.94 MiB 3.91 MiB 493 MiB 488 MiB

485 MiB

488 MiB

217 MiB 214 MiB 214 MiB 212 MiB 421 MiB 421 MiB 211 MiB 211 MiB 211 MiB 211 MiB 211 MiB 211 MiB 281 MiB 281 MiB

273 MiB

273 MiB 26.4 MiB 26.4 MiB 26.4 MiB 26.1 MiB 51.8 MiB 51.7 MiB 25.8 MiB 25.8 MiB 25.8 MiB 25.8 MiB 34.5 MiB 34.5 MiB

Models

YOLOv5 is a modern object detection architecture that is based on the YOLOv3 meta-

architecture with CSPNet backbone. The YOLOv5 was released on 05/2020 with a very

efficient design and State of the art accuracy results on the COCO benchmark.

In this pipeline, using a specific variant of the YOLOv5 architecture - yolov5m that

stands for medium sized networks.

Pre trained and compiled yolov5m model stored as .hef file.

Resolution: 640x640x3

Full precision accuracy: 41.7mAP

Dataset: COCO val2017 https://cocodataset.org/#home

Enter the git project to read further: https://github.com/ultralytics/yolov5
Link to the

network yaml in Hailo Model Zoo - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov5m.yaml

Centerpose

Hailo trained. Based on centerpose architecture with RegnetX_1.6FG
backbone

Resolution: 640x640x3

Dataset COCO-Pose

Link to the network yaml in Hailo Model Zoo - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/centerpose_repvgg_a0.y

aml

Overview of the pipeline

The following elements are the structure of the pipeline:

https://cocodataset.org/#home
https://github.com/ultralytics/yolov5
https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov5m.yaml
https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/centerpose_repvgg_a0.yaml

Hailo Tappas | User Guide

62/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

rtspsrc makes a connection to an rtsp server and reads the data. Used as a

source to get the video stream from rtsp-cameras.

rtph264depay extracts h264 video from rtp packets.

vaapidecodebin video decoding and scaling - this element uses vaapi hardware

acceleration to improve the pipeline performace
In this pipeline, the bin is

responsible for decoding h264 format and scaling the frame to 640X640.
It

contains the following elements:

vaapi<CODEC>dec is used to decode JPEG, MPEG-2, MPEG-4:2, H.264
AVC,

H.264 MVC, VP8, VP9, VC-1, WMV3, HEVC videos to VA surfaces (vaapi's

memory format),
depending on the actual value of 'CODEC' and the

underlying
hardware capabilities. This plugin is also able to implicitly

download the decoded surface to raw YUV buffers.

vaapipostproc is used to filter VA surfaces, for e.g. scaling,
deinterlacing,

noise reduction or sharpening. This plugin is also used to upload raw
YUV

pixels into VA surfaces.

vaapisink responsible for rendering VA surfaces to an X11 or Wayland

display (used in this pipeline by the fpsdisplaysink).

NOTE: In case your device does not suppport vaapi acceleration -

you should replace the vaapi elements in the pipeline with --
disable-vaapi argument.
This includes swapping decoder elements

and videosink elements with regular decodebin, videoscale (instead

of vappi's postproc) and autovideosink.

videoconvert converting the frame into RGB format

Hailo Tappas | User Guide

63/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

funnel takes multiple input sinks and outputs one source. N-to-1 funnel that

attaches a streamid to each stream and can later be used to demux back into

separate streams. This lets you queue frames from multiple streams to send to

the Hailo device one at a time.

tee duplicates the incomming frame and passes it into two different streams - to

perform two different inferences on different chips.

hailonet Performs the inference on the Hailo-8 device - configures the chip with

the hef and starts Hailo's inference process - sets streaming mode and sends the

buffers into the chip.
Requires the following properties: hef-path - points to the

compiled yolov5m hef, qos must be set to false to disable frame drops.

Hailo Tappas | User Guide

64/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

hailofilter performs given postprocess, chosen with the so-path property. in

this pipeline, two filters performs yolov5m and centerpose in parallel.

NOTE: If multiple hailofilters are present and dependent on each other,

then `qos` must be disabled for each.

If there is only one hailofilter, then qos may be enabled
(although it is still recommended to disable).

hailomuxer muxes 2 similar streams into 1 stream, holding both stream's

metadata.

streamiddemux a reverse to the funnel. It is a 1-to-N demuxer that splits a

serialized stream based on stream id to multiple outputs.

compositor compuses pictures from multiple sources. Handy for multi-

stream/tiling like applications, as it lets you input many streams and draw them

all together as a grid.

Hailo Tappas | User Guide

65/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

fpsdisplaysink outputs video into the screen, and displays the current and

average framerate.

NOTE: sync=false property in fpsdisplaysink element disables real-time

synchronization with the pipeline - it is mandatory in this case to reach the

best performance.

Hailo Tappas | User Guide

66/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Hailo Tappas | User Guide

67/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Python Classification Pipeline

Classification

The purpose of classification.sh is to demostrate classification on one video file

source with python post-processing
This is done by running a single-stream object
classification pipeline on top of GStreamer using the Hailo-8 device.

Options

./classification.sh [--input FILL-ME]

--input is an optional flag, a path to the video displayed (default is

classification_movie.mp4).

--show-fps is a flag that prints the pipeline's fps to the screen.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it.

Supported Networks:

'resnet_v1_50' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/resnet_v1_50.yaml

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/classification

./classification.sh

How it works

This section is optional and provides a drill-down into the implementation of the

classification app with a focus on explaining the GStreamer pipeline.
This section

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/resnet_v1_50.yaml

Hailo Tappas | User Guide

68/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

uses resnet_v1_50 as an example network so network input width, height, and hef

name are set accordingly.

gst-launch-1.0 \

 filesrc location=$input_source ! decodebin ! videoconvert ! \

 videoscale ! video/x-raw, pixel-aspect-ratio=1/1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path debug=False is-active=true qos=false
! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailopython module=$POSTPROCESS_MODULE qos=false ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailooverlay qos=false ! \

 videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}"

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Specifies the location of the video used, then decode and convert to the required

format.

2. videoscale ! video/x-raw,pixel-aspect-ratio=1/1 ! \

Re-scale the video dimensions to fit the input of the network. In this case it is

rescaling the video to 112X112 with the caps negotiation of hailonet. hailonet

Extracts the needed resolution from the HEF file during the caps negotiation, and

makes sure that the needed resolution is passed from previous elements.

3. queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Before sending the frames into hailonet element set a queue so no frames are

lost (Read more about queues here)

4. hailonet hef-path=$hef_path debug=False is-active=true qos=false
! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

69/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

5. hailopython so-path=$POSTPROCESS_MODULE qos=false debug=False !
\

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs a given post-process, in this case, performs resnet_v1_50 classification

post-process, which is mainly doing top1 on the inference output.

6. hailooverlay qos=False ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs drawing on the original image, in that case, performs drawing the top1

class name over the image.

7. videoconvert ! \

fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}"

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element.

Hailo Tappas | User Guide

70/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Century Pipeline

Overview:

century.sh demonstrates detection on one video file source over 6 different Hailo-8

devices.
This pipeline run's the detection network YoloX.

Options

./century.sh [--input FILL-ME]

--input is an optional flag, a path to the video displayed (default is

detection.mp4).

--show-fps is an optional flag that enables printing FPS on screen.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it

Supported Networks:

'yolox_l' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolox_l_leaky.yaml

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/x86/century

./century.sh

The output should look like:

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolox_l_leaky.yaml

Hailo Tappas | User Guide

71/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

How it works

This section is optional and provides a drill-down into the implementation of the

century app with a focus on explaining the GStreamer pipeline.
This section uses

yolox as an example network so network input width, height, and hef name are set

accordingly.

gst-launch-1.0 \

 filesrc location=$video_device ! decodebin ! videoconvert ! \

 videoscale ! video/x-raw, pixel-aspect-ratio=1/1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path device-count=$device_count is-
active=true ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter function-name=yolox so-path=$POSTPROCESS_SO qos=false
! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailooverlay qos=false !

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=false text-overlay=false ${additonal_parameters}

Hailo Tappas | User Guide

72/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Let's explain this pipeline section by section:

1. filesrc location=$video_device ! decodebin ! videoconvert !

Specifies the location of the video used, then decodes and converts to the

required format.

2. videoscale ! video/x-raw,pixel-aspect-ratio=1/1 ! \

Re-scale the video dimensions to fit the input of the network. In this case it is

rescaling the video to 640x640 with the caps negotiation of hailonet.

3. queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Before sending the frames into the hailonet element, set a queue so no frames

are lost (Read more about queues here)

4. hailonet hef-path=$hef_path device-count=$device_count is-
active=true ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device via $device_count devices, which is

set to 4 in this app.

5. hailofilter2 function-name=yolox so-path=$POSTPROCESS_SO
qos=false ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

hailofilter performs a given post-process. In this case the performs the YoloX

post-process.

6. hailooverlay qos=false ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

hailooverlay draws the post-processed boxes on the frame.

7. videoconvert ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=false text-overlay=false ${additonal_parameters}

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

73/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

Hailo Tappas | User Guide

74/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

GST-launch based Arm applications

1. Detection - single-stream object detection pipeline on top of GStreamer using the

Hailo-8 device.

Hailo Tappas | User Guide

75/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Detection Pipeline Arm

Overview

Our requirement from this pipeline is a real-time high-accuracy object detection to run

on a single video stream using an embedded host. The required input video resolution

was HD (high definition, 720p).

The chosen platform for this project is based on NXP’s i.MX8M Arm processor. The

Hailo-8TM AI processor is connected to it as an AI accelerator.

Drill Down

Although the i.MX8M is a capable host, processing and decoding real-time HD video is

bound to utilize a lot of the CPU’s resources, which may eventually reduce

performance. To solve this problem, most of the vision pre-processing pipeline has

been offloaded to the Hailo-8 device in our application.

The camera sends the raw video stream, encoded in YUV color format using the YUY2

layout. The data passes through Hailo’s runtime software library, called HailoRT, and

through Hailo’s PCIe driver. The data’s format is kept unmodified, and it is sent to the

Hailo-8 device as is.

Hailo-8’s NN core handles the data pre-processing, which includes decoding the YUY2

scheme, converting from the YUV color space to RGB and, finally, resizing the frames

into the resolution expected by the deep learning detection model.

The Hailo Dataflow Compiler supports adding these pre-processing stages to any

model when compiling it. In this case, they are added before the YOLOv5m detection

model.

Hailo Tappas | User Guide

76/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Options

./detection.sh [--input FILL-ME]

--input is an optional flag, path to the video camera used (default is

/dev/video2).

--show-fps is an optional flag that enables printing FPS on screen.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it"

Run

cd $TAPPAS_WORKSPACE/arm/apps/detection

./detection.sh

The output should look like:

Hailo Tappas | User Guide

77/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

How it works

This section is optional and provides a drill-down into the implementation of the

detection app with a focus on explaining the GStreamer pipeline.
This section uses

yolov5 as an example network so network input width, height, and hef name are set

accordingly.

gst-launch-1.0 \

 v4l2src device=$input_source ! video/x-
raw,format=YUY2,width=1280,height=720,framerate=30/1 ! \

 queue leaky=downstream max-size-buffers=5 max-size-bytes=0 max-
size-time=0 ! \

 hailonet hef-path=$hef_path debug=False is-active=true qos=false
batch-size=1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter function-name=$network_name so-path=$postprocess_so
qos=false debug=False ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$draw_so qos=false debug=False ! \

 queue leaky=downstream max-size-buffers=5 max-size-bytes=0 max-
size-time=0 ! \

 videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=false text-overlay=false ${additonal_parameters}

Hailo Tappas | User Guide

78/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Let's explain this pipeline section by section:

1. v4l2src device=$input_source ! video/x-
raw,format=YUY2,width=1280,height=720,framerate=30/1

Specifies the path of the camera, specify the required format and resolution.

2. queue leaky=downstream max-size-buffers=5 max-size-bytes=0 max-
size-time=0 ! \

Before sending the frames into the hailonet element, set a queue to leaky (Read

more about queues here)

3. hailonet hef-path=$hef_path debug=False is-active=true
qos=false batch-size=1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

4. hailofilter function-name=yolov5 so-path=$POSTPROCESS_SO
qos=false debug=False ! \

 queue name=hailo_draw0 leaky=no max-size-buffers=30 max-size-
bytes=0 max-size-time=0 ! \

 hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False
! \

 queue leaky=downstream max-size-buffers=5 max-size-bytes=0 max-
size-time=0 ! \

Each hailofilter performs a given post-process. In this case the first performs

the Yolov5m post-process and the second performs box drawing. Then set a leaky

queue to let the sink drop frames.

5. videoconvert ! \

 fpsdisplaysink video-sink=xvimagesink name=hailo_display
sync=true text-overlay=false ${additonal_parameters}

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

Links

hailofilter

Blog post about this setup

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c
https://hailo.ai/blog/customer-case-study-developing-a-high-performance-application-on-an-embedded-edge-ai-device/

Hailo Tappas | User Guide

79/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

GST-launch based Raspberry Pi

applications

GST-Launch based applications on Raspberry Pi

1. Sanity Pipeline - Helps you verify that all the required components are installed

correctly

2. Detection - single-stream object detection pipeline on top of GStreamer using the

Hailo-8 device.

3. Depth Estimation - single-stream depth estimation pipeline on top of GStreamer

using the Hailo-8 device.

4. Multinetworks parallel - single-stream multi-networks pipeline on top of

GStreamer using the Hailo-8 device.

5. Pose Estimation - Human pose estimation using centerpose network.

6. Face Detection - Face detection application.

7. Classification - Classification app using resnet_v1_50 network.

Hailo Tappas | User Guide

80/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Sanity pipeline Raspberry Pi

Overview

Sanity apps purpose is to help you verify that all the required components have been

installed successfully.

First of all, you would need to run sanity_gstreamer.sh and make sure that the image

presented looks like the one that would be presented later.

Sanity GStreamer

This app should launch first.

NOTE: Open the source code in your preferred editor to see how simple this app

is.

In order to run the app just cd to the sanity_pipeline directory and launch the app

cd $TAPPAS_WORKSPACE/apps/gstreamer/raspberrypi/sanity_pipeline

./sanity_gstreamer.sh

The output should look like:

If the output is similar to the image shown above, you are good to go to the next

verification phase!

Hailo Tappas | User Guide

81/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Detection Pipeline Raspberry Pi

Overview:

detection.sh demonstrates detection on one video file source and verifies Hailo’s

configuration.
This is done by running a single-stream object detection pipeline
on top of GStreamer using the Hailo-8 device.

Options

./detection.sh [--input FILL-ME]

--input is an optional flag, a path to the video file displayed (default is

detection.mp4).

--netowrk is a flag that sets which network to use. choose from [yolov5,

mobilenet_ssd], default is yolov5.
this will set the hef file to use, the hailofilter

function to use and the scales of the frame to match the width and heigh input

dimensions of the network.

--show-fps is an optional flag that enables printing FPS on screen.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it

--print-device-stats Print the power and temperature measured

Supported Networks:

'yolov5' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov5m.yaml

'mobilenet_ssd' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/ssd_mobilenet_v1.

yaml

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/raspberrypi/detection

./detection.sh

The output should look like:

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/yolov5m.yaml
https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/ssd_mobilenet_v1.yaml

Hailo Tappas | User Guide

82/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

How it works

This section is optional and provides a drill-down into the implementation of the

detection app with a focus on explaining the GStreamer pipeline.
This section uses

yolov5 as an example network so network input width, height, and hef name are set

accordingly.

gst-launch-1.0 \

 gst-launch-1.0 ${stats_element} \

 filesrc location=$input_source name=src_0 ! qtdemux ! h264parse !
avdec_h264 ! \

 videoscale n-threads=8 ! video/x-raw, pixel-aspect-ratio=1/1 !
videoconvert n-threads=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true qos=false batch-size=$batch_size ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter2 function-name=$network_name so-path=$postprocess_so
qos=false ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailooverlay ! \

 videoconvert n-threads=8 ! \

 fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=$sync_pipeline text-overlay=false ${additonal_parameters}"

Hailo Tappas | User Guide

83/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Let's explain this pipeline section by section:

1. filesrc location=$input_source name=src_0 ! qtdemux ! h264parse
! avdec_h264 ! \

Specifies the location of the video used, then decodes it.

2. filesrc location=$input_source name=src_0 ! qtdemux ! h264parse
! avdec_h264 ! \

Specifies the location of the video used, then decodes it.

3. videoscale n-threads=8 ! video/x-raw, pixel-aspect-ratio=1/1 !
videoconvert n-threads=8 ! \

Re-scale the video dimensions to fit the input of the network. In this case it is

rescaling the video to 640x640 with the caps negotiation of hailonet. Then

convert it to the required format.

4. queue ! \

Before sending the frames into the hailonet element, set a queue so no frames

are lost (Read more about queues here)

5. hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true qos=false batch-size=$batch_size ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

6. hailofilter2 function-name=$network_name so-path=$postprocess_so
qos=false ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Each hailofilter performs a given post-process. In this case performs the

Yolov5m post-process.

7. hailooverlay ! \

Performs the drawing.

8. videoconvert n-threads=8 ! \

fpsdisplaysink video-sink=ximagesink name=hailo_display

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

84/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

sync=$sync_pipeline text-overlay=false ${additonal_parameters}"

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

NOTE: Additional details about the pipeline provided in further examples

Hailo Tappas | User Guide

85/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Depth Estimation Pipeline Raspberry

Pi

Depth Estimation

depth_estimation.sh demonstrates depth estimation on one video file source.
This is

done by running a single-stream object depth estimation pipeline on top of

GStreamer using the Hailo-8 device.

Options

./depth_estimation.sh [--video-src FILL-ME]

-i --input is an optional flag, a path to the video displayed.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it

--show-fps is an optional flag that enables printing FPS on screen

Run

cd
/local/workspace/tappas/apps/gstreamer/raspberrypi/depth_estimation

./depth_estimation.sh

The output should look like:

Model

fast_depth in resolution of 224X224X3.

How it works

This section is optional and provides a drill-down into the implementation of the depth

estimation app with a focus on explaining the GStreamer pipeline.
This section uses

fast_depth as an example network so network input width, height, hef name, are set

accordingly.

Hailo Tappas | User Guide

86/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

gst-launch-1.0 \

 filesrc location=$input_source name=src_0 ! qtdemux ! h264parse !
avdec_h264 ! queue ! videoconvert n-threads=8 ! queue ! \

 tee name=t ! queue leaky=no max-size-buffers=30 max-size-bytes=0
max-size-time=0 ! \

 aspectratiocrop aspect-ratio=1/1 ! queue ! videoscale ! queue ! \

 hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true qos=false batch-size=1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$draw_so qos=false debug=False ! videoconvert
n-threads=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 videoconvert ! fpsdisplaysink video-sink=ximagesink
name=hailo_display sync=false text-overlay=false \

 t. ! queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! \

 videoscale ! video/x-raw, width=300, height=300 ! queue !
videoconvert n-threads=8 ! \

 ximagesink sync=false ${additonal_parameters}

Let's explain this pipeline section by section:

1. filesrc location=$input_source name=src_0 ! qtdemux ! h264parse
! avdec_h264 ! queue ! videoconvert n-threads=8 ! queue ! \

Specifies the location of the video used, then decodes and converts to the

required format using 8 threads for acceleration.

2. tee name=t

declare a tee that splits the pipeline into two branches.

3. queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
aspectratiocrop aspect-ratio=1/1 ! queue ! videoscale ! queue !
\

The beginning of the first split of the tee. The network used expects no borders,

so a crop mechanism is needed.

Re-scales the video dimensions to fit the input of the network. In this case it is

cropping the video and rescaling the video to 224x224 with the caps negotiation

of hailonet.

4. hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true qos=false batch-size=1 ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Hailo Tappas | User Guide

87/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Performs the inference on the Hailo-8 device.

5. hailofilter so-path=$draw_so qos=false debug=False !
videoconvert n-threads=8 ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs a given draw-process, in this case, performs fast_depth depth

estimation drawing per pixel.

6. videoconvert n-threads=8 ! fpsdisplaysink video-sink=ximagesink
name=hailo_display sync=false text-overlay=false \

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

7. t. ! queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! \

videoscale ! video/x-raw, width=300, height=300 ! queue

The beginning of the second split of the tee.
Re-scales the video dimensions.

8. videoconvert n-threads=8 ! \

ximagesink sync=false ${additonal_parameters}

Apply the final convert to let GStreamer utilize the format required by the

ximagesink element

NOTE: Additional details about the pipeline provided in further examples

Hailo Tappas | User Guide

88/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Detection and Depth Estimation

Pipeline Raspberry Pi

Detection and Depth Estimation

detection_and_depth_estimation.sh demonstrates depth estimation and detection

on one video file source.
This is done by running two streams on top of GStreamer

using one Hailo-8 device with using two hailonet elements.

Options

./detection_and_depth_estimation.sh [--video-src FILL-ME]

-i --input is an optional flag, a path to the video displayed.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it

--show-fps is an optional flag that enables printing FPS on screen

Run

cd
$TAPPAS_WORKSPACE/apps/gstreamer/raspberrypi/multinetworks_parallel/

./detection_and_depth_estimation.sh

The output should look like:

Model

fast_depth in resolution of 224X224X3.

mobilenet_ssd in resolution of 300X300X3.

How it works

This section is optional and provides a drill-down into the implementation of the app

with a focus on explaining the GStreamer pipeline.
This section uses fast_depth as an

example network so network input width, height, hef name, are set accordingly.

Hailo Tappas | User Guide

89/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

gst-launch-1.0 \

 $source_element ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 videoconvert n-threads=8 !

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 tee name=t ! \

 aspectratiocrop aspect-ratio=1/1 ! \

 queue ! videoscale n-threads=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true net-name=$depth_estimation_net_name qos=false batch-
size=1 ! \
 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$depth_estimation_draw_so qos=false
debug=False ! videoconvert n-threads=8 ! \

 fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=false text-overlay=false \

 t. ! \
 videoscale n-threads=8 ! queue ! \

 hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true net-name=$detection_net_name qos=false batch-size=1 !
\

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter2 so-path=$detection_post_so function-
name=mobilenet_ssd_merged qos=false ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailooverlay ! videoconvert n-threads=8 ! \

 fpsdisplaysink video-sink=ximagesink name=hailo_display2
sync=false text-overlay=false ${additonal_parameters} "

Let's explain this pipeline section by section:

1. filesrc location=$video_source name=src_0 ! qtdemux ! h264parse
! avdec_h264 \

Specifies the location of the video used and then decodes

2. queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Before sending the frames into hailonet element, set a queue so no frames are

lost (Read more about queues [here]

(https://gstreamer.freedesktop.org/documentation/ coreelements/queue.html?gi-

language=c))

https://gstreamer.freedesktop.org/documentation/

Hailo Tappas | User Guide

90/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

3. videoconvert n-threads=8 !

converts to the required format.

4. tee name=t !

Split into two threads - one for mobilenet_ssd and the other for fast_depth.

5. aspectratiocrop aspect-ratio=1/1 ! videoscale n-threads=8 ! \

Re-scales the video dimensions to fit the input of the network using 8 threads for

acceleration. In this case it is cropping the video and rescaling the video to

224x224 with the caps negotiation of hailonet.

6. hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true net-name=$depth_estimation_net_name qos=false
batch-size=1 ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

NOTE: We pre define the input and the output layers of each network, giving the

net-name argument.

6. hailofilter so-path=$DRAW_POSTPROCESS_SO qos=false debug=False !
\

Performs a given draw-process, in this case, performs fast_depth depth

estimation drawing per pixel.

7. videoconvert n-threads=8 ! \

fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=false text-overlay=false \

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

8. t. ! \

beggining of another split of the tee

9. videoscale n-threads=8 !

Hailo Tappas | User Guide

91/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Re-scales the video dimensions to fit the input of the network using 8 threads for

acceleration.

10. hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true net-name=$detection_net_name qos=false batch-
size=1 ! \
queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

11. hailofilter2 so-path=$detection_post_so function-
name=mobilenet_ssd_merged qos=false ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs a given post-process, in this case - detection post process.

12. hailooverlay ! \

Performs a draw process, based on the meta data of the buffers. this is a newer

api (comparing to using hailofilter for drawing).

13. videoconvert n-threads=8 ! \

fpsdisplaysink video-sink=ximagesink name=hailo_display2
sync=false text-overlay=false ${additonal_parameters} ! \

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

NOTE: Additional details about the pipeline provided in further examples

Hailo Tappas | User Guide

92/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Pose Estimation Pipeline Raspberry Pi

Overview:

hailo_pose_estimation.sh demonstrates human pose estimation on one video file

source and verifies Hailo’s configuration.
This is done by running a single-stream
pose estimation pipeline on top of GStreamer using the Hailo-8 device.

Options

./hailo_pose_estimation.sh [--input FILL-ME]

--input is an optional flag, a path to the video displayed (default is

detection.mp4).

--show-fps is an optional flag that enables printing FPS on screen.

--network Set network to use. choose from [centerpose, centerpose_416],

default is centerpose

--print-gst-launch is a flag that prints the ready gst-launch command without

running it"

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/raspberrypi/pose_estimation

./hailo_pose_estimation.sh

The output should look like:

How it works

This section is optional and provides a drill-down into the implementation of the

pose_estimation app with a focus on explaining the GStreamer pipeline.
This section

Hailo Tappas | User Guide

93/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

uses centerpose_regnetx_1.6gf_fpn as an example network so network input width,

height, and hef name are set accordingly.

gst-launch-1.0 \

 filesrc location=$input_source name=src_0 ! qtdemux ! h264parse !
avdec_h264 ! \

 videoscale n-threads=8 ! video/x-raw, pixel-aspect-ratio=1/1 !
videoconvert n-threads=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true qos=false batch-size=1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$postprocess_so qos=false debug=False
function-name=$network_name ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$draw_so qos=false debug=False ! \

 videoconvert n-threads=8 ! \

 fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=$sync_pipeline text-overlay=false ${additonal_parameters}

Let's explain this pipeline section by section:

1. filesrc location=$input_source name=src_0 ! qtdemux ! h264parse
! avdec_h264 ! \

 videoscale n-threads=8 ! video/x-raw, pixel-aspect-ratio=1/1 !
videoconvert n-threads=8 ! \

Specifies the location of the video used, then decodes the data.
Re-scale the

video dimensions to fit the input of the network, In this case it is rescaling the

video to 640x640 with the caps negotiation of hailonet.
Converts to the required

format using 8 threads for acceleration.

2. queue leaky=no max-size-buffers=30 max-size-bytes=0max-size-
time=0 ! \

Before sending the frames into the hailonet element, set a queue so no frames

are lost (Read more about queues here)

3. hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true qos=false batch-size=1 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

94/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

4. hailofilter so-path=$postprocess_so qos=false debug=False
function-name=$network_name ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter so-path=$draw_so qos=false debug=False ! \

Each hailofilter performs a given post-process. In this case the first performs

the centerpose post-process and the second performs box and skeleton drawing.

5. videoconvert n-threads=8 ! \

 fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=$sync_pipeline text-overlay=false ${additonal_parameters}

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

NOTE: Additional details about the pipeline provided in further examples

Hailo Tappas | User Guide

95/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Face Detection Pipeline Raspberry Pi

Overview:

The purpose of face_detection.sh is to demostrate face detection on one video file

source and to verify Hailo’s configuration.
This is done by running a single-stream
face detection pipeline on top of GStreamer using the Hailo-8 device.

Options

/face_detection.sh

--input is an optional flag, a path to the video displayed (default is

face_detection.mp4).

--show-fps is an optional flag that enables printing FPS on screen.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it"

Supported Networks

'liteface' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/lightface_slim.yam

l

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/raspberrypi/face_detection/

./face_detection.sh

The output should look like:

How it works

This section is optional and provides a drill-down into the implementation of the face
detection app with a focus on explaining the GStreamer pipeline.
This setction uses

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/lightface_slim.yaml

Hailo Tappas | User Guide

96/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

lightface_slim as an example network so network input width, height, hef name, are

set accordingly.

gst-launch-1.0 \

 filesrc location=$input_source name=src_0 ! qtdemux ! h264parse !
avdec_h264 ! videoconvert n-threads=8 ! tee name=t hailomuxer
name=mux \
 t. ! queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! mux. \

 t. ! videoscale n-threads=8 ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true qos=false ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter2 function-name=$network_name so-path=$postprocess_so
qos=false ! mux. \

 mux. ! queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! \

 hailooverlay ! queue leaky=no max-size-buffers=30 max-size-
bytes=0 max-size-time=0 ! \

 videoconvert n-threads=8 ! \

 fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=$sync_pipeline text-overlay=false ${additonal_parameters}

Let's explain this pipeline section by section:

1. filesrc location=$input_source name=src_0 ! qtdemux ! h264parse
! avdec_h264 ! videoconvert n-threads=8

Specifying the location of the video used, then decode and convert to the

required format using 8 threads for acceleration.

2. tee name=t

splitting to two branches of the pipeline

3. hailomuxer name=mux

decleration of hailomuxer element

4. t. ! queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! mux. \

a branch of the tee, passing the original frame to the muxer without re-scale

Hailo Tappas | User Guide

97/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

5. t. ! videoscale n-threads=8 ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Another branch of the tee that will perdorm the inference.
Re-scale the video

dimensions to fit the input of the network. In this case it is rescaling the video to

320x240 with the caps negotiation of hailonet.

6. hailonet hef-path=$hef_path device-id=$hailo_bus_id
debug=False is-active=true qos=false ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! \

Performs the inference on the Hailo-8 device.

NOTE: qos must be disabled for hailonet since dropping frames may cause

these elements to run out of alignment.

7. hailofilter2 function-name=$network_name so-path=$postprocess_so
qos=false ! mux. \

mux.

Each hailofilter performs a given post-process. In this case the first performs

the face detection post-process.
Enters the mux.

8. queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
hailooverlay ! queue leaky=no max-size-buffers=30 max-size-
bytes=0 max-size-time=0 ! \

Performs the Drawing.

9. videoconvert n-threads=8 ! \

fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=$sync_pipeline text-overlay=false ${additonal_parameters}

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element

NOTE: Additional details about the pipeline provided in further examples

Hailo Tappas | User Guide

98/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Classification Pipeline Raspberry Pi

Classification

The purpose of classification.sh is to demostrate classification on one video file

source.
This is done by running a single-stream object classification pipeline
on top of GStreamer using the Hailo-8 device.

Options

./classification.sh [--input FILL-ME]

--input is an optional flag, a path to the video displayed (default is

classification_movie.mp4).

--show-fps is a flag that prints the pipeline's fps to the screen.

--print-gst-launch is a flag that prints the ready gst-launch command without

running it.

Supported Networks:

'resnet_v1_50' - https://github.com/hailo-

ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/resnet_v1_50.yaml

Run

cd $TAPPAS_WORKSPACE/apps/gstreamer/raspberrypi/classification

./classification.sh

How it works

This section is optional and provides a drill-down into the implementation of the

classification app with a focus on explaining the GStreamer pipeline.
This section

https://github.com/hailo-ai/hailo_model_zoo/blob/master/hailo_model_zoo/cfg/networks/resnet_v1_50.yaml

Hailo Tappas | User Guide

99/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

uses resnet_v1_50 as an example network so network input width, height, and hef

name are set accordingly.

gst-launch-1.0 \

 filesrc location=$input_source ! qtdemux ! h264parse ! avdec_h264
! videoconvert n-threads=8 ! \

 tee name=t hailomuxer name=hmux \

 t. ! queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! hmux. \

 t. ! videoscale n-threads=8 ! video/x-raw, pixel-aspect-ratio=1/1
! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true qos=false ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 hailofilter2 so-path=$postprocess_so qos=false ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! hmux. \

 hmux. ! hailooverlay ! \

 queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \
 videoconvert n-threads=8 ! \

 fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=false text-overlay=false ${additonal_parameters}

Let's explain this pipeline section by section:

1. filesrc location=$input_source ! qtdemux ! h264parse !
avdec_h264 ! videoconvert n-threads=8 ! \

Specifies the location of the video used, then decode and convert to the required

format using 8 threads for acceleration.

2. tee name=t

Declare a tee that splits the pipeline into two branches in order to keep the

original resolution.

3. hailomuxer name=hmux

Declare a hailomuxer.

4. t. ! queue leaky=no max-size-buffers=30 max-size-bytes=0 max-
size-time=0 ! hmux. \

A connection between the first split of the tee to the hailomuxer.

Hailo Tappas | User Guide

100/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

5. t. ! videoscale n-threads=8 ! video/x-raw, pixel-aspect-
ratio=1/1 ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

The first split of the tee.
Re-scale the video dimensions to fit the input of the

network. In this case it is rescaling the video to 112X112 with the caps

negotiation of hailonet. hailonet Extracts the needed resolution from the HEF

file during the caps negotiation, and makes sure that the needed resolution is

passed from previous elements.
Before sending the frames into hailonet
element set a queue so no frames are lost (Read more about queues here)

6. hailonet hef-path=$hef_path device-id=$hailo_bus_id debug=False
is-active=true qos=false ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

Performs the inference on the Hailo-8 device.

7. hailofilter2 so-path=$postprocess_so qos=false ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! hmux. \

Performs a given post-process, in this case, performs resnet_v1_50 classification

post-process, which is mainly doing top1 on the inference output. Connected to

the hailomuxer.

8. hmux. ! hailooverlay ! \

queue leaky=no max-size-buffers=30 max-size-bytes=0 max-size-
time=0 ! \

A connection between the hailomuxer output to the hailooverlay element.

Performs classification draw-process.

9. videoconvert n-threads=8 ! \

fpsdisplaysink video-sink=ximagesink name=hailo_display
sync=false text-overlay=false ${additonal_parameters}

Apply the final convert to let GStreamer utilize the format required by the

fpsdisplaysink element.

https://gstreamer.freedesktop.org/documentation/coreelements/queue.html?gi-language=c

Hailo Tappas | User Guide

101/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Native Applications

Native detection application

Overview

This example demonstrate the use of libhailort's C API as part of a detection

application. The example uses the Yolov5m model, on top of the Hailo-8 device.

Compiling with CMake

Run the following commands from the application's directory.

cmake -H. -Bbuild

cmake --build build

Running the example

./build/detection_app

Example details

The example demonstrates the use of libhailort's C API, all functions calls are based on

the header provided in hailort/include/hailo/hailort.h.
The input images are

located in input_images/ directory and the output images are written to

output_images/ directory.
The application works on bitmap images with the following

properties:

24bits per pixel

Image size: 640x640

Code structure

main function:
  The main function gets the input images and passes them to

infer function.

infer function:
  First, the function is preparing the device for inference:

Device initialization
Open the Hailo PCIe device.

Used APIs: hailo_create_pcie_device

Configure the device from an HEF
The next step is to create an hailo_hef
object, and use it to configure the device for inference. Then, init an

hailo_configure_params_t object with default values, configure the

device and receive an hailo_configured_network_group object.

Used APIs: hailo_create_hef_file(), hailo_init_configure_params,

hailo_configure_device()

Build VStreams

Initialize VStream parameters (both input and output).

Hailo Tappas | User Guide

102/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Create VStreams.

Used APIs: hailo_make_input_vstream_params,

hailo_make_output_vstream_params, hailo_create_input_vstreams,

hailo_create_output_vstreams

Activating the network group before starting inference
Used APIs:

hailo_activate_network_group()

  Afterwards, the infer function starts the inference threads:

One thread for writing the data to the device using the write_all function.

Used APIs: hailo_vstream_write_raw_buffer

Three threads for receiving data from the device using the read_all
function.
Used APIs: hailo_vstream_read_raw_buffer

One thread for post-processing the data received from the device, drawing

the detected objects and writing the output files to the output directory.

FeatureData is an object used for gathering the information needed for the

post-processing and is created for each feature in the model.

Hailo Tappas | User Guide

103/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Hailo GStreamer Elements

1. HailoNet - A bin element which contains a hailosend element, a hailorecv
element and a queue between them. Responsible for configuring and running

inference on the Hailo-8 device.

2. HailoFilter - An element which enables the user to apply a postprocess or

drawing operation to a frame and its tensors.

3. HailoMuxer - An element designed for our new multi-device application. It

muxes 2 similar streams into 1 stream, holding both stream's metadata.

4. HailoDeviceStats - Hailodevicestats is an element that samples power and

temperature

5. HailoAggregator - HailoAggregator is an element designed for application with

cascading networks. It has 2 sink pads and 1 source

6. HailoCropper - HailoCropper is an element designed for application with

cascading networks. It has 1 sink and 2 sources

Hailo Tappas | User Guide

104/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

HailoNet

Overview

Hailonet is a bin element which contains a hailosend element, a hailorecv element

and a queue between them. The hailosend element is responsible for sending the

data received from the hailonet’s sink to the Hailo-8 device for inference. Inference

is done via the VStreams API. The hailorecv element will read the output buffers

from the device and attach them as metadata to the source frame that inferred them.

That is why the hailonet has only one source, even in cases where the HEF has more

than one output layer.

Parameters

Configuration and activation of the Hailo network is done when the pipeline is started.

Infers data using the Hailo-8 chip. The data is inferred according to the selected HEF

(hef property). Currently, only HEFs with one input layer are supported!

Selecting a specific PCIe device (when there are more than one) can be done with the

device-id property.

Networks switching can be done with the is-active property (this can’t be done in a

CLI application since this property needs to be turned on and off during runtime).

For multi-context networks the batch-size property can be used to specify the batch

size.

Using the inputs and outputs properties, specific VStreams can selected for input and

output inference.

Hierarchy

GObject

 +----GInitiallyUnowned

 +----GstObject

 +----GstElement

 +----GstBin

 +----GstHailoNet

Hailo Tappas | User Guide

105/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Implemented Interfaces:

 GstChildProxy

Pad Templates:

 SINK template: 'sink'

 Availability: Always

 Capabilities:

 ANY

 SRC template: 'src'

 Availability: Always

 Capabilities:

 ANY

Element has no clocking capabilities.

Element has no URI handling capabilities.

Pads:
 SINK: 'sink'

 Pad Template: 'sink'

 SRC: 'src'

 Pad Template: 'src'

Element Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "hailonet0"

 parent : The parent of the object

 flags: readable, writable

 Object of type "GstObject"

 async-handling : The bin will handle Asynchronous state
changes

 flags: readable, writable

 Boolean. Default: false

 message-forward : Forwards all children messages

 flags: readable, writable

 Boolean. Default: false

 debug : Should print debug information

 flags: readable, writable

 Boolean. Default: false

 device-id : Device ID ([<domain>]:<bus>:<device>.<func>,
same as in lspci command)

 flags: readable, writable

 String. Default: null

 hef-path : Location of the HEF file to read

 flags: readable, writable

 String. Default: null

 net-name : Configure and run this specific network. If
not passed, configure and run the default network - ONLY if there is
one network in the HEF!

 flags: readable, writable

 String. Default: null

 batch-size : How many frame to send in one batch

 flags: readable, writable

 Unsigned Integer. Range: 1 - 16 Default: 1

Hailo Tappas | User Guide

106/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 outputs-min-pool-size: The minimum amount of buffers to allocate
for each output layer

 flags: readable, writable

 Unsigned Integer. Range: 0 - 4294967295
Default: 16

 outputs-max-pool-size: The maximum amount of buffers to allocate
for each output layer or 0 for unlimited

 flags: readable, writable

 Unsigned Integer. Range: 0 - 4294967295
Default: 0

 is-active : Controls whether this element should be
active. By default, the hailonet element will not be active unless
there is only one hailonet in the pipeline

 flags: readable, writable

 Boolean. Default: false

Children:

 hailorecv

 hailo_infer_q_0

 hailosend

Hailo Tappas | User Guide

107/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

HailoFilter

Overview

Hailofilter is an element which enables the user to apply a postprocess or drawing

operation to a frame and its tensors. It provides an entry point for a compiled .so file

that the user writes, inside of which they will have access to the original image frame,

the tensors output by the network for that frame, and any metadata attached. At first

the hailofilter will read the buffer from the sink pad, then apply the filter defined in the

provided .so, until finally sending the filtered buffer along the source pad to continue

down the pipeline.

Parameters

The most important parameter here is the so-path. Here you provide the path to your

compiled .so (shared object file) that applies your wanted filter.

By default, the hailofilter will call on a filter() function within the .so as the entry point.

If your .so has multiple entry points, for example in the case of slightly different

network flavors, then you can chose which specific filter function to apply via the

function-name parameter.

As a member of the GstVideoFilter hierarchy, the hailofilter element supports qos

(Quality of Service). Although qos typically tries to garuantee some level of

performance, it can lead to frames dropping. For this reason it is advised to always
set qos=false to avoid either tensors being dropped or not drawn.

Hierarchy

GObject

 +----GInitiallyUnowned

 +----GstObject

 +----GstElement

 +----GstBaseTransform

 +----GstVideoFilter

 +----GstHailoFilter

Pad Templates:

 SINK template: 'sink'

 Availability: Always

 Capabilities:

 video/x-raw

 format: { (string)RGB, (string)YUY2 }

 width: [1, 2147483647]

 height: [1, 2147483647]

 framerate: [0/1, 2147483647/1]

 SRC template: 'src'

 Availability: Always

 Capabilities:

 video/x-raw

 format: { (string)RGB, (string)YUY2 }

 width: [1, 2147483647]

https://gstreamer.freedesktop.org/documentation/plugin-development/advanced/qos.html?gi-language=c

Hailo Tappas | User Guide

108/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 height: [1, 2147483647]

 framerate: [0/1, 2147483647/1]

Element has no clocking capabilities.

Element has no URI handling capabilities.

Pads:
 SINK: 'sink'

 Pad Template: 'sink'

 SRC: 'src'

 Pad Template: 'src'

Element Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "hailofilter0"

 parent : The parent of the object

 flags: readable, writable

 Object of type "GstObject"

 qos : Handle Quality-of-Service events

 flags: readable, writable

 Boolean. Default: true

 debug : debug

 flags: readable, writable, controllable

 Boolean. Default: false

 so-path : Location of the so file to load

 flags: readable, writable, changeable only in
NULL or READY state

 String. Default: null

 function-name : function-name

 flags: readable, writable, changeable only in
NULL or READY state

 String. Default: "filter"

Hailo Tappas | User Guide

109/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

HailoFilter2

Overview

Hailofilter2 is an element which enables the user to apply a postprocess operation on

hailonet's output tensors. It provides an entry point for a compiled .so file that the user

writes, inside of which they will have access to the original image frame, the tensors

output by the network for that frame, and any metadata attached. At first the

hailofilter2 will read the buffer from the sink pad, then apply the filter defined in the

provided .so, until finally sending the filtered buffer along the source pad to continue

down the pipeline.

Parameters

The most important parameter here is the so-path. Here you provide the path to your

compiled .so that applies your wanted filter.

By default, the hailofilter2 will call on a filter() function within the .so as the entry

point. If your .so has multiple entry points, for example in the case of slightly different

network flavors, then you can chose which specific filter function to apply via the

function-name parameter.

As a member of the GstVideoFilter hierarchy, the hailofilter2 element supports qos

(Quality of Service). Although qos typically tries to garuantee some level of

performance, it can lead to frames dropping. For this reason it is advised to always
set qos=false to avoid either tensors being dropped or not drawn.

Hierarchy

GObject

 +----GInitiallyUnowned

 +----GstObject

 +----GstElement

 +----GstBaseTransform

 +----GstHailoFilter2

Pad Templates:

 SRC template: 'src'

 Availability: Always

 Capabilities:

 ANY

 SINK template: 'sink'

 Availability: Always

 Capabilities:

 ANY

Element has no clocking capabilities.

Element has no URI handling capabilities.

Pads:
 SINK: 'sink'

 Pad Template: 'sink'

https://gstreamer.freedesktop.org/documentation/plugin-development/advanced/qos.html?gi-language=c

Hailo Tappas | User Guide

110/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 SRC: 'src'

 Pad Template: 'src'

Element Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "hailofilter2-0"

 parent : The parent of the object

 flags: readable, writable

 Object of type "GstObject"

 qos : Handle Quality-of-Service events

 flags: readable, writable

 Boolean. Default: false

 so-path : Location of the so file to load

 flags: readable, writable, changeable only in
NULL or READY state

 String. Default: null

 function-name : function-name

 flags: readable, writable, changeable only in
NULL or READY state

 String. Default: "filter"

Hailo Tappas | User Guide

111/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

HailoOverlay

Overview

HailoOverlay is a drawing element that can draw postprocessed results on an incoming

video frame.
This element supports the following results:

Detection - Draws the rectengle over the frame, with the label and confidence

(rounded).

Classification - Draws a classification over the frame, at the top left corner of the

frame.

Landmarks - Draws a set of points on the given frame at the wanted

coordintates.

Tiles - Can draw tiles as a thin rectengle.

Parameters

As a member of the GstBaseTransform hierarchy, the hailooverlay element supports

qos (Quality of Service). Although qos typically tries to garuantee some level of

performance, it can lead to frames dropping. For this reason it is advised to always
set qos=false to avoid either tensors being dropped or not drawn.

Hierarchy

GObject

 +----GInitiallyUnowned

 +----GstObject

 +----GstElement

 +----GstBaseTransform

 +----GstHailoOverlay

Pad Templates:

 SINK template: 'sink'

 Availability: Always

 Capabilities:

 video/x-raw

 format: { (string)RGB }

 width: [1, 2147483647]

 height: [1, 2147483647]

 framerate: [0/1, 2147483647/1]

 SRC template: 'src'

 Availability: Always

 Capabilities:

 video/x-raw

 format: { (string)RGB }

 width: [1, 2147483647]

 height: [1, 2147483647]

 framerate: [0/1, 2147483647/1]

Element has no clocking capabilities.

Element has no URI handling capabilities.

https://gstreamer.freedesktop.org/documentation/plugin-development/advanced/qos.html?gi-language=c

Hailo Tappas | User Guide

112/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Pads:
 SINK: 'sink'

 Pad Template: 'sink'

 SRC: 'src'

 Pad Template: 'src'

Element Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "hailooverlay0"

 parent : The parent of the object

 flags: readable, writable

 Object of type "GstObject"

 qos : Handle Quality-of-Service events

 flags: readable, writable

 Boolean. Default: false

Hailo Tappas | User Guide

113/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

HailoDeviceStats

HailoDeviceStats

Overview

Parameters

Hierarchy

Overview

Hailodevicestats is an element that samples power and temperature. It doesn't have

any pads, it just has to be part of the pipeline. An example for using this element could

be found under the detection / multistream_multidevice app.

Parameters

Determine the time period between samples with the interval property.

Choose device with the device-id property.

Hierarchy

GObject

 +----GInitiallyUnowned

 +----GstObject

 +----GstElement

 +----GstHailoDeviceStats

Pad Templates:

 none

Element has no clocking capabilities.

Element has no URI handling capabilities.

Pads:

 none

Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "hailodevicestats0"

 parent : The parent of the object

 flags: readable, writable

 Object of type "GstObject"

Hailo Tappas | User Guide

114/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 interval : Time period between samples, in seconds

 flags: readable, writable

 Unsigned Integer. Range: 0 - 4294967295
Default: 1

 device-id : Device ID ([<domain>]:<bus>:<device>.<func>,
same as in lspci command)

 flags: readable, writable

 String. Default: null

 silent : Should print statistics

 flags: readable, writable

 Boolean. Default: false

 power-measurement : Current power measurement of device

 flags: readable

 Float. Range: 0 -
3.402823e+38 Default: 0

 temperature : Current temperature of device

 flags: readable

 Float. Range: 0 -
3.402823e+38 Default: 0

Hailo Tappas | User Guide

115/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

HailoMuxer

Overview

HailoMuxer is an element designed for our new multi-device application. It muxes 2

similar streams into 1 stream, holding both stream's metadata. It has 2 src elements

and 1 sink, and whenever there are buffers on both src pads, it takes only 1 of the

buffers and passes it on, with both buffer's metadata.

Parameters

There are no unique properties to hailomuxer. The only parameters are the baseclass

parameters, which are 'name' and 'parent'.

Example

Hierarchy

GObject

 +----GInitiallyUnowned

 +----GstObject

 +----GstElement

 +----GstHailoMuxer

Pad Templates:

 SRC template: 'src'

 Availability: Always

 Capabilities:

 ANY

 SINK template: 'sink_%u'

 Availability: On request

 Capabilities:

 ANY

Element has no clocking capabilities.

Element has no URI handling capabilities.

Pads:
 SRC: 'src'

 Pad Template: 'src'

Element Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "hailomuxer0"

Hailo Tappas | User Guide

116/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 parent : The parent of the object

 flags: readable, writable

 Object of type "GstObject"

Hailo Tappas | User Guide

117/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

HailoPython

HailoPython

Overview

Parameters

Hierarchy

Overview

HailoPython is an element which enables the user to apply processing operations to an

image via python.
It provides an entry point for a python module that the user writes,

inside of which they will have access to the Hailo raw-output (output tensors) and

postprocessed-outputs (detections, classifications etc..) as well as the gstreamer

buffer. The python function will be called for each buffer going through the hailopython

element.

Parameters

The two paramaters that define the function to call are module and function for the

module path and function name respectively.
In addition, as a member of the

GstVideoFilter hierarchy, the hailofilter element supports qos (Quality of Service).

Although qos typically tries to garuantee some level of performance, it can lead to

frames dropping. For this reason it is advised to always set qos=false to avoid

either tensors being dropped or not drawn.

Hierarchy

GObject

 +----GInitiallyUnowned

 +----GstObject

 +----GstElement

 +----GstBaseTransform

 +----GstVideoFilter

 +----GstHailoPython

Pad Templates:

 SRC template: 'src'

 Availability: Always

 Capabilities:

 video/x-raw

 format: { (string)RGB, (string)YUY2 }

 width: [1, 2147483647]

 height: [1, 2147483647]

 framerate: [0/1, 2147483647/1]

 SINK template: 'sink'

 Availability: Always

 Capabilities:

 video/x-raw

 format: { (string)RGB, (string)YUY2 }

 width: [1, 2147483647]

 height: [1, 2147483647]

https://gstreamer.freedesktop.org/documentation/plugin-development/advanced/qos.html?gi-language=c

Hailo Tappas | User Guide

118/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 framerate: [0/1, 2147483647/1]

Element has no clocking capabilities.

Element has no URI handling capabilities.

Pads:
 SINK: 'sink'

 Pad Template: 'sink'

 SRC: 'src'

 Pad Template: 'src'

Element Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "hailopython0"

 parent : The parent of the object

 flags: readable, writable

 Object of type "GstObject"

 qos : Handle Quality-of-Service events

 flags: readable, writable

 Boolean. Default: true

 module : Python module name

 flags: readable, writable

 String. Default:
"/local/workspace/tappas/processor.py"

 function : Python function name

 flags: readable, writable

 String. Default: "run"

HailoCropper

Overview

HailoCropper is an element providing cropping functionality, designed for application

with cascading networks, meaning doing one task based on a previous task. It has 1

sink and 2 sources.
HailoCropper receives a frame on its sink pad, then invokes it's

prepare_crops method that returns the vector of crop reigions of interest (crop_roi),

For each crop_roi it creats a cropped image (representing it's x, y, width, height in the

full frame). The cropped images are then sent to the second src.
From the first src we

push the original frame that the detections were cropped from.

By default, HailoCropper receives a video frame that has detections (means a

previous HailoNet + HailoFilter ran) on it's sikpad. For each detection it creats a

cropped image (using a specific algorithm to create a scaled image with the same

aspect ratio).
This is used by the cascading networks app Face Landmarks based on

Face Detection.

Derived classes can override the default prepare_crops behaviour and decide where

to crop and how many times.
hailotilecropper element does this exact thing when

splitting the frame into tiles by rows and columns.

Hailo Tappas | User Guide

119/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Parameters

There is only one property for this element other than the common 'name' and

'parent'.
The name of this boolean property is 'internal-offset' and it is used to

determine whether we use the original offset* of the buffer or overwrite it with our own

offset. The offset of the buffer is given to the original buffer and all the crops, and used

by the hailoaggregator, to make sure the cropped detections we are 'muxing' with the

original buffer are actually from the same buffer.
*Offset is an attribute of buffer that

determines on what offset this buffer is since the start of the pipeline run, represented

by number of buffers. It's similar to frame-id in video. On some videos the offset

attribute is not created by the filesrc element and it is set to -1 (casted to uint64),

therefore if we want to use it to determine what the current frame is, we should

somehow track the number of buffers and set this offset accordingly.

Example

Hierarchy

GObject

 +----GInitiallyUnowned

 +----GstObject

 +----GstElement

 +----GstHailoCropper

Pad Templates:

 SRC template: 'src'

 Availability: Always

 Capabilities:

 ANY

 SINK template: 'sink'

 Availability: Always

 Capabilities:

 ANY

Element has no clocking capabilities.

Element has no URI handling capabilities.

Pads:
 SINK: 'sink'

 Pad Template: 'sink'

 SRC: 'src_0'

 Pad Template: 'src'

 SRC: 'src_1'

Hailo Tappas | User Guide

120/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 Pad Template: 'src'

Element Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "hailocropper0"

 parent : The parent of the object

 flags: readable, writable

 Object of type "GstObject"

 internal-offset : Whether to use Gstreamer offset of internal
offset.

 flags: readable, writable, controllable

 Boolean. Default: false

Hailo Tappas | User Guide

121/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

HailoTileCropper

Overview

HailoTileCropper is a derived element of hailoCropper and it is used in the Tiling app.

It overrides the default prepare_crops behaviour to return a vector of tile reigions of

intrest, and allows splitting the incoming frame into tiles by rows and columns.
Each

tile stores their x, y, width, and height (with overlap between tiles included) in the full

frame.
Just like the base HailoCropper, the full original frame is sent to the first src pad

while all the cropped images are sent to the second.

hailoaggregator wiil aggregate the cropped tiles and stitch them back to the original

resolution.

Parameters

tiles-along-x-axis : Number of tiles along x axis (columns) - default 2

tiles-along-y-axis : Number of tiles along x axis (rows) - default 2

overlap-x-axis : Overlap in percentage between tiles along x axis (columns) -

default 0

overlap-y-axis : Overlap in percentage between tiles along y axis (rows) - default

0

tiling-mode : Tiling mode (0 - single-scale, 1 - multi-scale) - default 0

scale-level : Scales (layers of tiles) in addition to the main layer 1: [(1 X 1)] 2: [(1

X 1), (2 X 2)] 3: [(1 X 1), (2 X 2), (3 X 3)]] - default 2

Example

Hierarchy

GObject

 +----GInitiallyUnowned

 +----GstObject

 +----GstElement

 +----GstHailoBaseCropper

 +----GstHailoTileCropper

Pad Templates:

 SRC template: 'src'

 Availability: Always

 Capabilities:

 video/x-raw

 format: { (string)RGB, (string)YUY2 }

Hailo Tappas | User Guide

122/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 width: [1, 2147483647]

 height: [1, 2147483647]

 framerate: [0/1, 2147483647/1]

 SINK template: 'sink'

 Availability: Always

 Capabilities:

 video/x-raw

 format: { (string)RGB, (string)YUY2 }

 width: [1, 2147483647]

 height: [1, 2147483647]

 framerate: [0/1, 2147483647/1]

Element has no clocking capabilities.

Element has no URI handling capabilities.

Pads:
 SINK: 'sink'

 Pad Template: 'sink'

 SRC: 'src_0'

 Pad Template: 'src'

 SRC: 'src_1'

 Pad Template: 'src'

Element Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "hailotilecropper0"

 parent : The parent of the object

 flags: readable, writable

 Object of type "GstObject"

 internal-offset : Whether to use Gstreamer offset of internal
offset.

 NOTE: If using file sources, Gstreamer does
not generate offsets for buffers,

 so this property should be set to true in
such cases.

 flags: readable, writable, controllable

 Boolean. Default: false

 tiles-along-x-axis : Number of tiles along x axis (columns)

 flags: readable, writable, changeable only in
NULL or READY state

 Unsigned Integer. Range: 1 - 20 Default: 2

 tiles-along-y-axis : Number of tiles along x axis (rows)

 flags: readable, writable, changeable only in
NULL or READY state

 Unsigned Integer. Range: 1 - 20 Default: 2

 overlap-x-axis : Overlap in percentage between tiles along x
axis (columns)

 flags: readable, writable, changeable only in
NULL or READY state

 Float. Range: 0 -
1 Default: 0

 overlap-y-axis : Overlap in percentage between tiles along y
axis (rows)

Hailo Tappas | User Guide

123/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 flags: readable, writable, changeable only in
NULL or READY state

 Float. Range: 0 -
1 Default: 0

 tiling-mode : Tiling mode

 flags: readable, writable

 Enum "GstHailoTileCropperTilingMode" Default:
0, "single-scale"

 (0): single-scale - Single Scale

 (1): multi-scale - Multi Scale

 scale-level : 1: [(1 X 1)] 2: [(1 X 1), (2 X 2)] 3: [(1 X
1), (2 X 2), (3 X 3)]]

 flags: readable, writable, changeable only in
NULL or READY state

 Unsigned Integer. Range: 1 - 3 Default: 2

Hailo Tappas | User Guide

124/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

HailoAggregator

Overview

HailoAggregator is an element designed for applications with cascading networks or

cropping functionality, meaning doing one task based on a previous task.
A

complement to the HailoCropper, the two elements work together to form versatile

apps. It has 2 sink pads and 1 source: the first sinkpad receives the original frame from

an upstream hailocropper, while the other receives cropped buffers from that

hailocropper.
The HailoAggregator waits for all crops of a given orignal frame to arrive,

then sends the original buffer with the combined metadata of all collected crops.

HailoAggregator also performs a 'flattening' functionality on the detection metadata

when receiving each frame: detections are taken from the cropped frame, copied to

the main frame and re-scaled/moved to their corresponding location in the main frame

(x,y,width,height).
As an example:

Face Landmarks based on Face Detection - HailoCropper crops each face

detection -> HailoNet + FaceLandmarks post for each face -> HailoAggregator

aggregates the frames back.

Tiling - hailotilecropper crops the image to tiles -> HailoNet + Detection post for

each tile -> HailoAggregator aggregates the frames back and 'flatten` the

detection objects in the metadata.

HailoAggregator exports two methods to extend or override in derived elements:

handle_sub_frame_roi: Functionality to perform for each incoming sub frame.

Calls flattening method.

post_aggregation: Functionality to perform after all frames are aggregated

succesfully.
Base implementation does nothing.

Parameters

There are no unique properties to hailoaggregator. The only parameters are the

baseclass parameters, which are 'name' and 'parent'.

Example

Hierarchy

GObject

 +----GInitiallyUnowned

 +----GstObject

Hailo Tappas | User Guide

125/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 +----GstElement

 +----GstHailoAggregator

Pad Templates:

 SRC template: 'src'

 Availability: Always

 Capabilities:

 ANY

 SINK template: 'sink'

 Availability: Always

 Capabilities:

 ANY

Element has no clocking capabilities.

Element has no URI handling capabilities.

Pads:
 SINK: 'sink_0'

 Pad Template: 'sink'

 SINK: 'sink_1'

 Pad Template: 'sink'

 SRC: 'src'

 Pad Template: 'src'

Element Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "hailoaggregator0"

 parent : The parent of the object

 flags: readable, writable

 Object of type "GstObject"

 flatten-detections : perform a 'flattening' functionality on the
detection metadata

 when receiving each frame.

 flags: readable, writable, changeable only in
NULL or READY state

 Boolean. Default: true

HailoTileAggregator

Overview

HailoTileAggregator is a derived element of hailoAggregator and it is used in the

Tiling app.
A complement to the HailoTileCropper, the two elements work together to

form a versatile tiling apps.

The element extends two methods of the parent element:

handle_sub_frame_roi: Functionality to perform for each incoming sub frame.

Performs remove_exceeded_bboxes (remove boxes close to boundary - using

given border_threshold) and then parent element performs flatten detections.

Hailo Tappas | User Guide

126/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

post_aggregation: Functionality to perform after all frames are aggregated

succesfully.
Performs remove_large_landscape and NMS.

Example

Hierarchy

GObject

 +----GInitiallyUnowned

 +----GstObject

 +----GstElement

 +----GstHailoAggregator

 +----GstHailoTileAggregator

Pad Templates:

 SRC template: 'src'

 Availability: Always

 Capabilities:

 ANY

 SINK template: 'sink'

 Availability: Always

 Capabilities:

 ANY

Element has no clocking capabilities.

Element has no URI handling capabilities.

Pads:
 SINK: 'sink_0'

 Pad Template: 'sink'

 SINK: 'sink_1'

 Pad Template: 'sink'

 SRC: 'src'

 Pad Template: 'src'

Element Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "hailotileaggregator0"

 parent : The parent of the object

 flags: readable, writable

 Object of type "GstObject"

 flatten-detections : perform a 'flattening' functionality on the
detection metadata when receiving each frame

 flags: readable, writable, changeable only in

Hailo Tappas | User Guide

127/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

NULL or READY state

 Boolean. Default: true

 iou-threshold : threshold

 flags: readable, writable, changeable only in
NULL or READY state

 Float. Range: 0 -
1 Default: 0.3

 border-threshold : border threshold

 flags: readable, writable, changeable only in
NULL or READY state

 Float. Range: 0 -
1 Default: 0.1

 remove-large-landscape: remove large landscape objects when running
in multi-scale mode

 flags: readable, writable, changeable only in
NULL or READY state

Hailo Tappas | User Guide

128/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Installation

Using Dockers

Install Docker

The section below would help you with the installation of Docker.

Install curl

sudo apt-get install -y curl

Get and install docker

curl -fsSL https://get.docker.com -o get-docker.sh

sh get-docker.sh

Add your user (who has root privileges) to the Docker group

sudo usermod -aG docker $USER

Reboot/log out in order to apply the changes to the group

sudo reboot

Note: Consider reading Running out of disk space if your system is space limited

Running TAPPAS container from pre-built Docker

image

Preparations

HailoRT PCIe driver is required - install instructions are provided in HailoRT

documentations. make sure that the driver is installed correctly by: Verify Hailo

installation.

Unzip tappas_VERSION_docker.zip, it should contain the following files:

hailo-docker-tappas-VERSION.tar: the pre-built docker image

run_tappas_docker.sh: Script that loads and runs the docker image

dockerfile.tappas_run: Dockerfile used within the first load

Running for the first time

In order to use TAPPAS release Docker image, you should run the following script:

./run_tappas_docker.sh --tappas-image TAPPAS_IMAGE_PATH

NOTE: TAPPAS_IMAGE_PATH is the path to the hailo-docker-tappas-

VERSION.tar

The script would load the docker image, and start a new container.
The script might

take a couple of minutes, and after that, you are ready to go.

Resuming (Second time and on)

Hailo Tappas | User Guide

129/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

From now an on you should run the script with the --resume flag

./run_tappas_docker.sh --resume

NOTE: The reason that you want to use the --resume flag is that the container

already exists, so only attaching to the container is required.

Flags and advanced use-cases

./run_tappas_docker.sh [options]

Options:

 --help Show this help

 --tappas-image Path to tappas image

 --resume Resume an old container

 --container-name Start a container with a specific name,
defaults to hailo_tappas_container

Use-cases

For building a new container with the default name:

./run_tappas_docker.sh --tappas-image TAPPAS_IMAGE_PATH

For resuming an old container:

./run_tappas_docker.sh --resume

Both of this methods can receive a container name:

./run_tappas_docker.sh --tappas-image TAPPAS_IMAGE_PATH --container-
name CONTAINER_NAME

./run_tappas_docker.sh --resume --container-name CONTAINER_NAME

for example:

./run_hailort_docker.sh hailo-docker-tappas-VERSION.tar --container-
name hailo_tappas_container

Build Docker image by your own

Preparations

HailoRT PCIe driver is required - install instructions are provided in HailoRT

documentations. make sure that the driver is installed correctly by: Verify Hailo

installation.

Steps

Enter the TAPPAS release directory:

Hailo Tappas | User Guide

130/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

├── tappas_VERSION_user_guide.pdf

└── tappas_VERSION_linux_installer.zip

└── tappas_VERSION_docker.zip

Firstly, unpack the tappas_VERSION_linux_installer.zip.
Before we start the build

process, we must copy the HailoRT release to the repo under the name release.

Note: This version runs and tested with HailoRT version 4.5.0.

The tree should look like this:

├── build_docker.sh

├── core

├── docker
├── docs

├── downloader

├── manual-install.md

├── README.md

├── release --> copied `HailoRT` release

├── resources

├── tools

├── apps

├────── gstreamer

├────────── x86

├────────── arm

├────── native

After that

enter the repo

cd tappas

Build the Docker

./build_docker.sh

Run the Docker

./docker/run_docker.sh

Details

This section describes Hailo-Docker files hierarchy and purpose.

Lets take a look inside the docker folder, you can see: Dockerfile.base,
Dockerfile.gstreamer, run_docker.sh, scripts

run_docker.sh - An easy-to-use run script that handles all the arguments required by

the docker.

$./run_docker.sh --help

Run Hailo Docker:

The default mode is trying to create a new container

Hailo Tappas | User Guide

131/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Options:

 --help Show this help

 --resume Resume an old container

 --resume-command Resume command (used only when --resume flag
is used)

 --override Start a new container, if exists already,
delete the previous one

If no flags specified, the script would try to create a new container (and could

potently fail if one already exists)

--override - When used the script would create a new container and delete the

previous one if exists

--resume - The script would try to resume the last container created

--resume-command - In case where --resume flags is used, the default command

is /bin/bash, this could be changed using this flags

Dockerfile.base - Our base dockerfile. Installs required packages, Hailo's software,

and drivers.
Dockerfile.gstreamer - Based on top of Dockerfile.base. Installs and

copies GStreamer requirements.

scripts - Directory of scripts used by the Docker files.

Compile hailonet and hailotools inside the docker

install_hailo_gstreamer.sh - compiles Hailo's gstreamer plugin including hailonet,

hailofilter and the posprocess files.
This script is called inside the docker build process.

Sometimes you will prefer to change the sources inside the docker for development or

debug purposes and compile them inside the docker.
Running this script from

$TAPPAS_WORKSPACE/scripts directory will build and deploy the sources.

Troubleshooting

Hailo containers are taking to much space

Creating new docker containers with --override does not assure that the directory of

cached images and containers is cleaned.
to prevent your system to ran out of

memory and clean /var/lib/docker run docker system prune from time to time.

Running out of disk space

Change Docker root directory - By default, Docker stores most of its data inside the

/var/lib/docker directory on Linux systems. There may come a time when you want

to move this storage space to a new location. For example, the most obvious reason

might be that you’re running out of disk space.

Firstly, stop the Docker from running

$ sudo systemctl stop docker.service

$ sudo systemctl stop docker.socket

Hailo Tappas | User Guide

132/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Next, we need to edit the /lib/systemd/system/docker.service file

$ sudo vim /lib/systemd/system/docker.service

The line we need to edit looks like this:

ExecStart=/usr/bin/dockerd -H fd://

Edit the line by putting a -g and the new desired location of your Docker directory.

When you’re done making this change, you can save and exit the file.

ExecStart=/usr/bin/dockerd -g /new/path/docker -H fd://

If you haven’t already, create the new directory where you plan to move your Docker

files to.

$ sudo mkdir -p /new/path/docker

Next, reload the systemd configuration for Docker, since we made changes earlier.

Then, we can start Docker.

$ sudo systemctl daemon-reload

$ sudo systemctl start docker

Just to make sure that it worked, run the ps command to make sure that the Docker

service is utilizing the new directory location.

$ ps aux | grep -i docker | grep -v grep

Hailo Tappas | User Guide

133/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Manual Install

A guide about how to install our required components manually.

NOTE: Only ubuntu 18.04 with GStreamer 1.14 is tested.

Download required files

Download all the required files (models, videos, compiled .so's) by running:

cd downloader

pip install -r requirements.txt

python main.py

NOTE: This could take up to a couple of minutes
NOTE: python 3.6 or above is

required

Hailo install

First you would need to install Hailo's platform, follow our install guide for that.
After

Hailo is installed:
And then Make sure that Hailo works

GStreamer install

Install the required packages from apt

add-apt-repository ppa:oibaf/graphics-drivers

apt-get update

apt-get update && apt-get -y --no-install-recommends install \

 wget \
 build-essential \

 pkg-config \

 software-properties-common pciutils \

 lshw \
 lsb-release \

 va-driver-all \

 vainfo \

 autoconf \

 automake \

 libtool \

 bison \

 flex \
 gstreamer-1.0 \

 gstreamer1.0-dev \

 libgstreamer1.0-0 \

 gstreamer1.0-plugins-base \

 gstreamer1.0-plugins-bad \

 gstreamer1.0-plugins-ugly \

 gstreamer1.0-libav \

 gstreamer1.0-vaapi \

 gstreamer1.0-doc \

 gstreamer1.0-tools \

Hailo Tappas | User Guide

134/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 gstreamer1.0-x \

 gstreamer1.0-alsa \

 gstreamer1.0-gl \

 gstreamer1.0-gtk3 \

 gstreamer1.0-qt5 \

 gstreamer1.0-pulseaudio \

 python-gst-1.0 \

 libgirepository1.0-dev \

 libgstreamer-plugins-base1.0-dev \

 libcairo2-dev \

 gir1.2-gstreamer-1.0 \

 python3-gi \

 python-gi-dev

Then verify that GStreamer is installed in the right version by using this follow

command:

gst-launch-1.0 --gst-version | awk '{print $NF}' | cut -d. -f1,2

The expected output should be 1.14

RTSP

If you are planning to use RTSP source, a patch to fix an issue in RTSP plugin is required

within gst-plugins-good and therefore you can't install gst-plugins-good directly

from apt.
If you have no plans to use RTSP source just run:

apt-get install gstreamer1.0-plugins-good

If you do plan to use RTSP source

Compile gst-plugins-good

git clone -b 1.14 https://github.com/GStreamer/gst-plugins-good.git

cd gst-plugins-good

git apply <your parent
dir>/hailo/core/patches/rtsp/rtspsrc_stream_id_path.patch

This section provided above would clone and apply the patch, you can verify that the

patch applied successfully by running git status and verify that gstrtspsrc.c is

modified.

root@hailo-nvr:/hailo/sources/gst-plugins-good# git status

On branch 1.14

Your branch is up to date with 'origin/1.14'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

Hailo Tappas | User Guide

135/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 modified: gst/rtsp/gstrtspsrc.c

no changes added to commit (use "git add" and/or "git commit -a")

After that compile gst-plugins-good

meson build --prefix /usr/

ninja -C build

sudo ninja -C build install

You can verify that the install works by running the follow command for example:

root@hailo-nvr:/hailo/sources/gst-plugins-good# gst-inspect-1.0 rtsp

Plugin Details:

 Name rtsp

 Description transfer data via RTSP

 Filename /usr/lib/x86_64-linux-gnu/gstreamer-
1.0/libgstrtsp.so

 Version 1.14.5

 License LGPL

 Source module gst-plugins-good

 Binary package GStreamer Good Plug-ins source release

 Origin URL Unknown package origin

 rtpdec: RTP Decoder

 rtspsrc: RTSP packet receiver

 2 features:

 +-- 2 elements

Install Opencv

Hailo GStreamer plugins requires opencv in version (4.5.2).
You can get the required

modules pre compiled from our sources and copy them to your file system with:

cp -r <base_dir>/hailo/core/opencv/* /usr/lib/ && \

Or compile it from source:

1. Install core packages:

sudo apt update

sudo apt install -y cmake g++ make

2. Download the latest opencv release source code via git or zip file (4.5.2 as for

1.6.2021):

Hailo Tappas | User Guide

136/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

sudo apt install wget unzip

wget -O opencv.zip
https://github.com/opencv/opencv/archive/4.5.2.zip

unzip opencv-4.5.2.zip

Or

sudo apt install git

git clone https://github.com/opencv/opencv.git

git checkout tags/4.5.2

3. Create a build directory

mkdir -p build && cd build

4. Build and install using cmake with flags (each flag should start with -D).

cmake -DOPENCV_GENERATE_PKGCONFIG=ON -DBUILD_LIST=core,imgproc -
DINSTALL_C_EXAMPLES=ON -DINSTALL_PYTHON_EXAMPLES=ON -
DCMAKE_INSTALL_PREFIX=/usr/local -DCMAKE_BUILD_TYPE=RELEASE
../opencv

make -j4

make install

OPENCV_GENERATE_CONFIG=ON : Create pkg-config file for the install

BUILD_LIST=core,imgproc : Build only the relevant modules

INSTALL_C_EXAMPLES=ON, INSTALL_PYTHON_EXAMPLES=ON : Install C and

Python examples

CMAKE_INSTALL_PREFIX=/usr : choose the installation folder

DCMAKE_BUILD_TYPE=RELEASE : chhoose the build type

NOTE: BUILD_LIST argument will build and install only a small section of

opencv library, we use it to get only what the application requires, and to

faster the build process. If you want all of opencv skip it.

Hailo plugins

Copy Hailo GStreamer plugins:

cp <base_dir>/hailo/x86/gstreamer/libgsthailometa.so /usr/lib/x86_64-
linux-gnu/gstreamer-1.0/ && \

cp <base_dir>/hailo/x86/gstreamer/libgsthailo.so /usr/lib/x86_64-
linux-gnu/gstreamer-1.0/ && \

cp <base_dir>/hailo/x86/gstreamer/libhrt.so /usr/lib/x86_64-linux-
gnu/

And that's it, you are ready to go.
Check our Getting started section.

Hailo Tappas | User Guide

137/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Install GStreamer VAAPI plugins

1. Check if your platform matches VAAPI's requirements

Hardware requirements

Hardware supported by i965 driver or iHD, such as

Intel Ironlake, Sandybridge, Ivybridge, Haswell, Broadwell,

Skylake, etc. (HD Graphics)

Intel BayTrail, Braswell

Intel Poulsbo (US15W)

Intel Medfield or Cedar Trail

Hardware supported by AMD Radeonsi driver, such as the list below

AMD Carrizo, Bristol Ridge, Raven Ridge, Picasso, Renoir

AMD Tonga, Fiji, Polaris XX, Vega XX, Navi 1X

Other hardware supported by Mesa VA gallium state-tracker

(taken from https://github.com/GStreamer/gstreamer-vaapi/blob/master/README)

Get hardware information about Intel Graphics Card with:

lshw -c video

Or use

lspci | grep VGA

Make sure that VGA compatible device with Intel drivers present.

In addition, you can list available devices in the following location:

ls /dev/dri

Output should look like :

card0 card1 renderD128 renderD129

2. Install Drivers

 add-apt-repository ppa:oibaf/graphics-drivers

 apt update

 apt dist-upgrade

 reboot

install VA-API drivers.

apt install va-driver-all

https://github.com/GStreamer/gstreamer-vaapi/blob/master/README

Hailo Tappas | User Guide

138/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

3. List Available video drivers

ls /usr/lib/x86_64-linux-gnu/dri | grep drv_video.so

Use vainfo (diagnostic tool for VA-API) to check that everything is loaded correctly

without any warning or mistakes.

apt install vainfo

vainfo

4. Install gstreamer-vaapi

apt install gstreamer1.0-vaapi

Hailo Tappas | User Guide

139/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Yocto

This section will guide through the integration of Hailo's Yocto layer's into your own

Yocto
environment.

Two layers are provided by Hailo, the first one is meta-hailo which is packed within the

HailoRT release and the second one is meta-hailo-tappas which is packed within the

TAPPAS relaese.

meta-hailo-tappas is a layer that based un-top of meta-hailo that adds TAPPAS

recipes.

The layers were built and validated with the following Yocto releases:

Warrior (kernel 4.19.35)

Zeus (kernel 5.4.24)

Dunfell (kernel 5.4.85)

Gatesgarth (kernel 5.10.9)

Extraction

HailoRT

From the HailoRT release, untar platform.tar.gz without installing HailoRT locally. In

this case the Yocto files are located under platform/. (you can read more in the

HailoRT documentation)

set a HAILORT_EXTERNALSRC variable in your conf/local.conf file to point to the root

directory of the HailoRT release you have extracted:

HAILO_EXTERNALSRC = "<insert full HailoRT path here>"

IMAGE_INSTALL_append = "hailo-firmware libhailort hailo-pci
libgsthailo"

Tappas

From the TAPPAS release, untar tappas_VERSION_linux_installer.zip, the Yocto files

are located under yocto/. the layer uses the unpacked release directory as an external

source. In order for the build to work you will have to set a TAPPAS_EXTERNALSRC

variable in your conf/local.conf file to point to the root directory of the TAPPAS
release you have extracted:

Add the following to your image in your conf/local.conf:

TAPPAS_EXTERNALSRC = "<insert full TAPPAS path here>"

IMAGE_INSTALL_append = "libgsthailotools"

Build your image

Run bitbake and build your image. After the build successfully finished, burn the Image

to your embedded device.

Hailo Tappas | User Guide

140/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Copy the ARM apps

From within the x86 container, copy the arm apps into the embedded device using your

preferred way of copying

Validating the integration's success

Make sure that the following conditions have been met on the target device:

Running hailortcli fw-control identify prints the right configurations

Running gst-inspect-1.0 | grep hailo returns hailo elements:

hailo: hailonet: hailonet element

hailodevicestats: hailodevicestats element

Running gst-inspect-1.0 | grep hailotools returns hailotools elements:

hailotools: hailomuxer: Muxer pipe fitting

hailotools: hailofilter: Hailo postprocessing and drawing
element

post-processes shared object files exists at /usr/lib/hailo-post-processes

Recipes

libgsthailo

Hailo's GStreamer plugin for running inference on the hailo8 chip. Depends on

libhailort and GStreamer, the source files located under the HailoRT release.

platform/hailort/gstreamer.

The recipe compiles and copies the libgsthailo.so file to /usr/lib/gstreamer-1.0
on the target device's
root file system, make it loadable by GStreamer as a plugin.

Note - this recipe requires a definition of HAILO_EXTERNALSRC in the local.conf -

point to the HailoRT release.

libgsthailotools

Hailo's TAPPAS gstreamer elements and post-processes. Depends on libgsthailo and

GStreamer.
the source files located in the TAPPAS release under

core/hailo/gstreamer.
The recipe compiles with meson and copies the

libgsthailotools.so file to /usr/lib/gstreamer-1.0
and the post processes to

/usr/lib/hailo-post-processes on the target device's root file system.

Note - this recipe requires a definition of TAPPAS_EXTERNALSRC in the local.conf -

point to the TAPPAS release.

Hailo Tappas | User Guide

141/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Cross-compile Hailo's GStreamer

plugins

Overview

Hailo recommended method at the moment for cross-compilation is using Yocto SDK

(aka Toolchain). We provide wrapper scripts whose only requirement is a Yocto

toolchain to make this as easy as possible.

Preparations

In order to cross-compile you need to run TAPPAS container on a X86 machine and

copy the Yocto toolchain to the container.

Toolchain

What is Toolchain?

A standard Toolchain consists of the following:

Cross-Development Toolchain: This toolchain contains a compiler, debugger, and

various miscellaneous tools.

Libraries, Headers, and Symbols: The libraries, headers, and symbols are specific

to the image (i.e. they match the image).

Environment Setup Script: This *.sh file, once run, sets up the cross-development

environment by defining variables and preparing for Toolchain use.

You can use the standard Toolchain to independently develop and test code that is

destined to run on some target machine.

What should I add to my image?

For this example we would add the recipes to a NXP-IMX based image

Must Add

GStreamer plugins

IMAGE_INSTALL_append += " \

 imx-gst1.0-plugin \

 gstreamer1.0-plugins-bad-videoparsersbad \

 gstreamer1.0-plugins-good-video4linux2 \

 gstreamer1.0-plugins-base \

"

Opencv requirements for the hailo gstreamer plugin’s postprocess

CORE_IMAGE_EXTRA_INSTALL += " \

 libopencv-core-dev \

 libopencv-highgui-dev \

"

Nice to add

Hailo Tappas | User Guide

142/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

GStreamer plugins

IMAGE_INSTALL_append += " \

 gstreamer1.0-python \

 gst-shark \

 gst-instruments \

"

Enable trace hooks for GStreamer

PACKAGECONFIG_append_pn-gstreamer1.0 = "gst-tracer-hooks"

Prepare the Toolchain

In order to generate a Yocto toolchain, use this following command

Generate the Toolchain

bitbake -c do_populate_sdk <image name>

Compress the toolchain to tar.gz

cd <BUILD_DIR>/tmp/deploy/sdk

touch toolchain.tar.gz

tar -czf toolchain.tar.gz --exclude=toolchain.tar.gz .

Copy the toolchain.tar.gz to the container using docker cp

docker cp toolchain.tar.gz
hailo_tappas_container:/local/workspace/tappas

Components

GstHailo

Compiling the gst-hailo component.
This script, firstly unpack and installs the

toolchain (If not installed already), and only after that, cross-compiles.

Flags

$./cross_compile_gsthailo.py --help

usage: cross_compile_gsthailo.py [-h]

 {aarch64,armv7l} {debug,release}

 toolchain_tar_path

Cross-compile gst-hailo.

positional arguments:

 {aarch64,armv7l} Arch to compile to

 {debug,release} Build and compilation type

 toolchain_tar_path Toolchain TAR path

optional arguments:

Hailo Tappas | User Guide

143/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 -h, --help show this help message and exit

Example

An example for executing the script:

NOTE: In this example we assume that the toolchain is located under toolchain-

raw/hailo-dartmx8m-zeus-aarch64-toolchain.tar.gz

$./cross_compile_gsthailo.py aarch64 debug toolchain-raw/hailo-
dartmx8m-zeus-aarch64-toolchain.tar.gz

INFO:cross_compile_gsthailo.py:Compiling gstreamer

INFO:cross_compile_gsthailo.py:extracting toolchain

INFO:cross_compile_gsthailo.py:installing toolchain

INFO:cross_compile_gsthailo.py:installing
/$TAPPAS_WORKSPACE/tools/cross-compiler/toolchain-raw/fsl-imx-
xwayland-glibc-x86_64-fsl-image-gui-aarch64-imx8mq-var-dart-
toolchain-5.4-zeus.sh

INFO:cross_compile_gsthailo.py:toolchain ready to use
(/local/workspace/tappas/tools/cross-compiler/toolchain)

INFO:cross_compile_gsthailo.py:using environment setup found in
/$TAPPAS_WORKSPACE/tools/cross-compiler/toolchain/environment-setup-
aarch64-poky-linux

INFO:cross_compile_gsthailo.py:Starting compilation...

INFO:cross_compile_gsthailo.py:Compilation done

A good practice is to check the output using file command

$ ls aarch64-gsthailo-build/

CMakeCache.txt CMakeFiles Makefile cmake_install.cmake
libgsthailo.so

$ file aarch64-gsthailo-build/libgsthailo.so

aarch64-gsthailo-build/libgsthailo.so: ELF 64-bit LSB shared object,
ARM aarch64, version 1 (SYSV), dynamically linked,
BuildID[sha1]=e55c1655c113e99bb649dbb03c15b844142503ee, with
debug_info, not stripped

As you can see, the file is compatible to aarch64 like we wanted to

GstHailoTools

This script cross-compiles gst-hailo-tools.
This script, firstly unpack and installs the

toolchain (If not installed already), and only after that, cross-compiles.

Flags

$./cross_compile_gsthailotools.py --help

usage: cross_compile_gsthailotools.py [-h]

 [--yocto-distribution
YOCTO_DISTRIBUTION]

 {aarch64,armv7l}
{debug,release}

Hailo Tappas | User Guide

144/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

 toolchain_tar_path

Cross-compile gst-hailo.

positional arguments:

 {aarch64,armv7l} Arch to compile to

 {debug,release} Build and compilation type

 toolchain_tar_path Toolchain TAR path

optional arguments:

 -h, --help show this help message and exit

 --yocto-distribution YOCTO_DISTRIBUTION

 The name of the Yocto distribution to use

Example

Run the compilation script

NOTE: In this example we assume that the toolchain is located under toolchain-

raw/hailo-dartmx8m-zeus-aarch64-toolchain.tar.gz

$./cross_compile_gsthailotools.py aarch64 debug toolchain

INFO:./cross_compile_gsthailotools.py:Building hailofilter plugin and
post processes

INFO:./cross_compile_gsthailotools.py:Running Meson build.

INFO:./cross_compile_gsthailotools.py:Running Ninja command.

Check the output directory

$ ls aarch64-gsthailotools-build/

build.ninja compile_commands.json config.h libs meson-info
meson-logs meson-private plugins

libgsthailotools.so is stored under libs

$ ls aarch64-gsthailotools-build/plugins/*.so

libgsthailotools.so

And the post-processes are stored under plugins

$ ls aarch64-gsthailotools-build/libs/*.so

libcenterpose_post.so libmobilenet_ssd_post.so

libclassification.so libsegmentation_draw.so

libdebug.so libyolo_post.so

libdetection_draw.so

Copy the cross-compiled files

Hailo Tappas | User Guide

145/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Find out where the GStreamer plugins are stored in your embedded device by running

the following command:

gst-inspect-1.0 filesrc | grep Filename | awk '{print $2}' | xargs
dirname

Copy libgsthailo.so + libgsthailotools.so to the path found out above.
Copy the

post-processes so files under libs to the embedded device under /usr/lib/hailo-post-

processes (create the directory if it does not exist)

Run gst-inspect-1.0 hailo and gst-inspect-1.0 hailotools and make sure that

no error raises

Hailo Tappas | User Guide

146/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Further Reading

GStreamer Framework

GStreamer Principles

Object-oriented​ - All GStreamer Objects can be extended using the GObject

inheritance methods. All plugins are loaded dynamically and can be extended

and upgraded independently.​

GStreamer adheres to GObject, the GLib 2.0 object model. A programmer familiar

with GLib 2.0 or GTK+ will be comfortable with GStreamer.​

Extensible​ core plugins to encapsulate all common media streaming

functionalities.

Allow binary-only plugins​ - Plugins are shared libraries that are loaded at runtime.

High performance​

using GLib's GSlice allocator​

ref-counting and copy on write minimize the usage of memcpy.

allowing hardware acceleration by using specialized plugins.​

GStreamer Elements

Elements - have one specific function for processing/ generating / consuming

data. By chaining together several such elements, you create a pipeline that can

do a specific task.​

Pads - are an element's input and output, where you can connect other

elements. A pad can be viewed as a “plug” or “port” on an element where links

may be made with other elements, and through which data can flow to or from

those elements. Data types are negotiated between pads using a process called

caps negotiation. Data types are described by GstCaps.​

Bin - A bin is a container for a collection of elements. Since bins are subclasses of

elements themselves, you can mostly control a bin as if it were an element,

thereby abstracting away a lot of complexity for your application. A pipeline is a

top-level bin. It provides a bus for the application and manages the

synchronization for its children.

Hailo Tappas | User Guide

147/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Hailo Tappas | User Guide

148/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Debugging with GstShark

GstShark is an open-source project from RidgeRun that provides benchmarks and

profiling tools for GStreamer 1.7.1 (and above). It includes tracers for generating

debug information plus some tools to analyze the debug information. GstShark

provides easy to use and useful tracers, paired with analysis tools to enable

straightforward optimizations.

GstShark leverages GStreamer's tracing hooks and open-source and standard tracing

and plotting tools to simplify the process of understanding the bottlenecks in your

pipeline.

The profiling tool provides 3 general features that can be used to debug the pipeline:

Console printouts - At the most basic level, you should get printouts from the

traces about the different measurements made. If you know what you are looking

for, you may see it here at runtime.

Graphic visualization - Shown above, gst-shark can generate a pipeline graph

that shows how elements are connected and what caps were negotiated between

them. This is a very convenient feature to look at the pipeline in a more

comfortable way. The graph is generated at runtime so it is a great way to see

and debug how elements were actually connected and what formats the data

ended up in.

Gst-plot - A suite of graph generating scripts are included in gst-shark that will

plot different graphs for each tracer metric enabled. This is a powerful tool to

visualize each metric that can be used for deeper debugging.

Hailo Tappas | User Guide

149/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Install

Our docker image already contains GstShark! If you decide to not use our Docker

image, our suggestion is to follow RidgeRun tutorial: GstShark

Bash shortcuts

As part of our creation of the Docker image, we copy some convenient shortcuts to

GstShark:

vim ~/.bashrc

set gstreamer debug

gst_set_debug() {

 export GST_SHARK_LOCATION=/tmp/profile

 export GST_DEBUG_DUMP_DOT_DIR=<PATH YOU WANT DUMP FILES>

 export GST_DEBUG="GST_TRACER:7"

 export
GST_TRACERS="cpuusage;proctime;interlatency;scheduletime;buffer;bitra
te;framerate;queuelevel;graphic"

 echo 'export
GST_TRACERS="cpuusage;proctime;interlatency;scheduletime;buffer;bitra
te;framerate;queuelevel;graphic"'

}

set gstreamer to only show graphic

gst_set_graphic() {

 export GST_SHARK_LOCATION=/tmp/profile

 export GST_DEBUG_DUMP_DOT_DIR=<PATH YOU WANT DUMP FILES>

 export GST_DEBUG="GST_TRACER:7"

 export GST_TRACERS="graphic"

 echo 'export
GST_TRACERS="cpuusage;proctime;interlatency;scheduletime;buffer;bitra
te;framerate;queuelevel;graphic"'

}

unset gstreamer debug

gst_unset_debug() {

 unset GST_TRACERS

}

run gst-plot

gst_plot_debug() {

 cd <PATH TO GST-SHARK REPO FOLDER: gst-shark/scripts/graphics>

 ./gstshark-plot $GST_SHARK_LOCATION -p

 cd -

}

Note that we added 4 functions: two sets, an unset, and a plot function. The set

functions enable gst-shark by setting environment variables, the chief of which is

GST_TRACERS. This enables the different trace hooks in the pipeline. The available

https://developer.ridgerun.com/wiki/index.php?title=GstShark

Hailo Tappas | User Guide

150/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

tracers are listed in the echo command at the end of each set. You can enable any

combination of the available tracers, just chain them together with a ';' (notice that the

difference between gst_set_debug and gst_set_graphic is that gst_set_debug enables

all tracers whereas gst_set_graphic only enables the graphic tracer that draws the

pipeline graph). GST_SHARK_LOCATION and GST_DEBUG_DUMP_DOT_DIR set locations

where the dump files are stored, the first sets where the tracer dumps are (used for

gst-plot), and the latter where the dot file is saved (the graphic pipeline graph). Unset

disables all tracers, and gst_plot_debug runs gst-plot.

Using GstShark

Let’s say you have a gstreamer app you want to profile. Start by enabling gst-shark:

Then just run your app. You will start seeing all kinds of tracer prints, and when the

pipeline starts playing you should see the graphic plot load.

NOTE:: The graph will stay open as long as the pipeline runs. However if you

have GST_DEBUG_DUMP_DOT_DIR set then afterwards a .dot file will be saved.

Click this file to reopen the graph.

After you’ve run a gstreamer pipeline with tracers enabled, you can plot them using

gst-plot. gst-plot will open an Octave window which will runt he appropriate script to

plot each tracer. Depending on how much data you have to plot this can take a while:

Hailo Tappas | User Guide

151/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Each graph inspects a different metric of the pipeline, it is recommended to read more

about what each one represents here:

CPU Usage

Processing Time

InterLatency

Schedule Time

Buffer

Bitrate

Framerate

Queue Level

Graphic

Good luck, happy hunting.

Hailo Tappas | User Guide

152/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Debugging with Gst-Instruments

gst-instruments is a set of performance profiling and data flow inspection tools for

GStreamer pipelines.

gst-top-1.0 at the start of the pipeline will analyze and profile the run. (gst-top-

1.0 gst-launch-1.0 ! audiotestsrc ! autovideosink)

gst-report-1.0 - generates performance report for input trace file.

gst-report-1.0 --dot gst-top.gsttracee | dot -Tsvg > perf.svg -

generates performance graph in DOT format.

Read more in gst-instruments github page

https://github.com/kirushyk/gst-instruments

Hailo Tappas | User Guide

153/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Writing Your Own Postprocess

Overview

If you want to add a network to the Tappas that is not already supported, then you will

likely need to implement a new postprocess and drawing filter. Fortunately with the use

of the hailofilter, you don't need to create any new gstreamer elements, just provide

the shared object file (.so) that applies your filter!

In this guide we will go over how to create such an so and what mechanisms/structures

are available to you as you create your postprocess.

Getting Started

Where are all the files?

To begin your postprocess writing journey, it is good to understand where you can find

all the relevant source files that already exist, and how to add your own.

From the /hailo/ directory, you can find the core/ folder. Inside this core/ directory

are a few subdirectories that host different types of sources files. The one we are

interested in is hailo/. Here you will find source files for all kinds of Hailo tools, such

as the hailofilter, the different metas provided, and the source files for the

postprocesses of the networks that were already provided in the Tappas. Inside this

directory is one titled gstreamer/, and inside that are two folders of interest: libs/
and plugins/. The former contains the source code for all the postprocess and

drawing functions packaged in the Tappas, while the latter contains source code for the

hailofilter, hailomuxer, and the different metas/classes available. This guide will

mostly focus on this core/hailo/gstreamer/ directory, as it has everything we need

to create and compile a new .so! You can take a moment to peruse around, when you

are ready to continue enter the postprocesses/ directory:

Hailo Tappas | User Guide

154/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Preparing the Header File: Default Filter Function

We can create our new postprocess here in the postprocesses/ folder. Create a new

header file named my_post.hpp.

In the first line we want to import a useful class to our postprocess, so add the

following include:

#include "hailo_frame.hpp"

A hailo_frame is a class that represents an image buffer that has a tensor or a

number of tensors attached. You can find the class definition in

plugins/metadata/hailo_frame.hpp. This class can also hold detection results, and will

be the return value of your .so! Let's wrap up the header file by adding a function

protoype for our filter, your whole header file should look like:

#include "hailo_frame.hpp"

G_BEGIN_DECLS

void filter(HailoFramePtr hailo_frame);

G_END_DECLS

Yes really, that's it! The hailofilter element does not expect much, just that the

above filter function be provided. We will discuss adding multiple filters in the same

.so later. Note that the filter function takes a HailoFramePtr as a parameter; this

will provide you with the hailo_frame of each passing image.

Implementing filter()

Let's start implementing the actual filter so that you can see how to access and work

with tensors. Start by creating a new file called my_post.cpp. Open it and include the

following:

#include <gst/gst.h>

#include <iostream>

#include "my_post.hpp"

#include "hailo_detection.hpp"

The <gst/gst.h> include provides the gstreamer framework api, the <iostream> will

allow us to print to the console, the "my_post.hpp" includes the header file we just

wrote, and the "hailo_detection.hpp" will provide access to the DetectionObject
struct which represents any detection object that we infer. You can find the source for

DetectionObject in plugins/metadata/hailo_detection.hpp, later we will use it to

attach detected objects to the frame.

For now add the follwoing implmentation for filter() so that we have a working

postprocess we can test:

// Default filter function

void filter(HailoFramePtr hailo_frame)

http://localhost:44913/hailo/core/hailo/gstreamer/plugins/metadata/hailo_frame.hpp
http://localhost:44913/hailo/core/hailo/gstreamer/plugins/metadata/hailo_detection.hpp

Hailo Tappas | User Guide

155/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

{

 std::cout << "My first postprocess!" << std::endl;

}

That should be enough to try compiling and running a pipeline! Next we will see how to

add our postprocess to the Meson project so that it compiles.

Hailo Tappas | User Guide

156/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Compiling and Running

Building with Meson

Meson is an open source build system that puts an emphasis on speed and ease of

use. GStreamer uses meson for all subprojects to generate build instructions to be

executed by ninja, another build system focused soley on speed that requires a higher

level build system (ie: meson) to generate its input files.

Like GStreamer, Tappas also uses Meson, and compiling new projects requires

adjusting the meson.build files. Here we will discuss how to add yours.

In the gstreamer/libs/ path you will find a meson.build, open it and add the following

entry for our postprocess:

##

MY POST SOURCES

##

my_post_sources = [

 'postprocesses/my_post.cpp',

]

my_post_lib = shared_library('my_post',

 my_post_sources,

 cpp_args : hailo_lib_args,

 link_args: hailo_ld_args,

 include_directories: project_inc,

 dependencies : plugin_deps + hailo_deps,

 gnu_symbol_visibility : 'default',

)

This should give meson all the information it needs to compile our postprocess. In

short, we are providing paths to cpp compilers, linked libraries, included directories,

and dependencies. Where are all these path variables coming from? Great question:

from the parent meson project, you can read that meson file to see what packages and

directories are available at core/hailo/gstreamer/meson.build.

Compiling the .so

You should now be ready to compile your postprocess. To help streamline this process

we have gone ahead and provided a script that handles most of the work. You can find

this script at /hailo/docker/scripts/install_hailo_gstreamer.sh. This script includes some

flags that allow you do more specific operations, but the only one you need right now

is --skip-hailort. This omits recompiling the Hailort package (where the hailonet

element comes from). Since our postprocess does not affect or change Hailort, then

we can save time by not recompiling. From the /hailo/ folder you can run:

./docker/scripts/install_hailo_gstreamer.sh --skip-hailort

https://mesonbuild.com/
https://gstreamer.freedesktop.org/documentation/installing/building-from-source-using-meson.html?gi-language=c
https://ninja-build.org/
http://localhost:44913/hailo/core/hailo/gstreamer/libs/meson.build
http://localhost:44913/hailo/core/hailo/gstreamer/meson.build
http://localhost:44913/hailo/docker/scripts/install_hailo_gstreamer.sh

Hailo Tappas | User Guide

157/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

If all goes well you should see some happy green YES, and our .so should appear in

apps/gstreamer/x86/lib/!

Running the .so

Congratulations! You've compiled your first postprocess! Now you are ready to run the

postprocess and see the results. Since it is still so generic, we can try it. Run this test

pipeline in your terminal to see if it works:

Hailo Tappas | User Guide

158/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

gst-launch-1.0 videotestsrc ! hailofilter so-
path=$TAPPAS_WORKSPACE/apps/gstreamer/x86/libs/libmy_post.so !
fakesink

See in the above pipeline that we gave the hailofilter the path to libmy_post.so in

the so-path property. So now every time a buffer is received in that hailofilter's

sink pad, it calls the filter() function in libmy_post.so. The resulting app should

just show the original video while our chosen text "My first postprocess!" prints in

the console:

Hailo Tappas | User Guide

159/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Filter Basics

Working with Tensors

Printing statements on every buffer is cool and all, but we would like a postprocess that

can actually do operations on inference tensors. Let's take a look at how we can do

that.

Head back to my_post.cpp and swap our print statement with the following:

// Get the output layers from the hailo frame.

std::vector<HailoTensorPtr> tensors = hailo_frame->get_tensors();

The hailo_frame has two ways of providing the output tensors of a network: via the

get_tensors() and get_tensors_by_name() functions. The first (which we used here)

returns an std::vector of HailoTensorPtr objects. These are an std::shared_ptr to

a HailoTensor: a class that represents an output tensor of a network. HailoTensor
holds all kinds of important tensor metadata besides the data itself; such as the width,

height, number of channels, and even quantization parameters. You can see the full

implementation for this class at plugins/metadata/hailo_tensor.hpp.

get_tensors_by_name() also returns a HailoTensorPtr for each output layer, but this

time as an std::map that pairs the output layer names with their corresponding

HailoTensorPtr. This can be convenient if you want to perform operations on specific

layers whose names you know in advanced.

So now we have a vector of HailoTensorPtr objects, lets get some information out of

one, add the following lines to our filter() function:

// Get the first output tensor

HailoTensorPtr first_tensor = tensors[0];

std::cout << "Tensor: " << first_tensor->name;

std::cout << " has width: " << first_tensor->width;

std::cout << " height: " << first_tensor->height;

std::cout << " channels: " << first_tensor->channels << std::endl;

Recompile with the same script we used earlier. Run a test pipeline, and this time see

actual parameters of the tensor printed out:

gst-launch-1.0 filesrc
location=$TAPPAS_WORKSPACE/apps/gstreamer/x86/detection/detection.mp4
name=src_0 ! decodebin ! videoscale ! video/x-raw, pixel-aspect-
ratio=1/1 ! videoconvert ! queue ! hailonet hef-
path=$TAPPAS_WORKSPACE/apps/gstreamer/x86/detection/yolov5m.hef
debug=False is-active=true qos=false batch-size=8 ! queue leaky=no
max-size-buffers=30 max-size-bytes=0 max-size-time=0 ! hailofilter
so-path=$TAPPAS_WORKSPACE/apps/gstreamer/x86/libs/libmy_post.so
qos=false debug=False ! videoconvert ! fpsdisplaysink video-
sink=ximagesink name=hailo_display sync=true text-overlay=false

http://localhost:44913/hailo/core/hailo/gstreamer/plugins/metadata/hailo_tensor.hpp

Hailo Tappas | User Guide

160/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

With a HailoTensorin hand, you have everything you need to perform your

postprocess operations. You can access the actual tensor values from the HailoTensor
with:

auto first_tensor_data = first_tensor->data;

Keep in mind that at this point the data is of type uint8_t, You will have to dequantize

the tensor to a float if you want the full precision. Luckily the quantization parameters

(scale and zero point) are also accesible through the HailoTensor.

Attaching Detection Objects to the Frame

Now that you know how to create a basic filter and access your inference tensor, let's

take a look at how to add a detection object to your hailo_frame.

Remove the prints from the filter() function and replace them with the following

function call:

std::vector<DetectionObject> detections = demo_detection_objects();

Here we are calling a function demo_detection_objects() that will return some

detection objects. Copy the following function definition into your my_post.cpp:

std::vector<DetectionObject> demo_detection_objects()

{

 std::vector<DetectionObject> objects; // The detection objects we
will eventually return

 DetectionObject first_detection = DetectionObject(0.2, 0.2, 0.2,
0.2, 0.99, 1);

 DetectionObject second_detection = DetectionObject(0.6, 0.6, 0.2,
0.2, 0.89, 1);

 objects.push_back(first_detection);

 objects.push_back(second_detection);

 return std::move(objects);

}

In this function we are creating two instances of a DetectionObject and pushing them

into a vector that we return. Note that when creating a DetectionObject, we give a

Hailo Tappas | User Guide

161/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

series of parameters. The expected parameters are as follows:

DetectionObject(float xmin, float ymin, float height, float width,
float confidence, int class_id, int dataset_id=0)

NOTE: It is assumed that the xmin, ymin, width, and height given are a

percentage of the image size (meaning, if the box is half as wide as the width of

the image, then width=0.5). This protects the pipeline's ability to resize buffers

without comprimising the correct relative size of the detection boxes.

Looking back at the demo function we just introduced, we are adding two instances of

DetectionObject: first_detection and second_detection. According to the

parameters we saw, first_detection has an xmin 20% along the x axis, and a ymin
20% down the y axis. The width and height are also 20% of the image. The last two

parameters, confidence and class_id, show that this instance has a 99% confidence

for class_id 1. What label does class_id 1 imply? That depends on your dataset!

Notice that the last parameter of DetectionObject is a dataset_id with default 0.

The provided detection drawer, which we will look at later, uses the dataset_id along

with the class_id to look up the proper label within different datasets. Right now a

few datasets are provided out of the box in the Tappas, you can find them in the file

libs/postprocess/common/labels.hpp. The default dataset is COCO, so a class_id of 1

is a person.

Now that we have a couple of DetectionObject in hand, lets add them to the original

hailo_frame. There is a helper function we need in the

libs/postprocess/common/common.hpp file, so include it into my_post.cpp now:

#include "common/common.hpp"

This file will no doubt have other features you will find useful, so it is recommended to

keep the file handy.

With the include in place, let's add the following function call to the end of the

filter() function:

// Update the frame with the found detections.

common::update_frame(hailo_frame, detections);

This function takes a hailo_frame and a DetectionObject vector, then adds each

DetectionObject to the hailo_frame. Now that our detections have been added to

the hailo_frame and the postprocess is done, we can clear the tensors vector to

release the memory (add the command tensors.clear(); to the end of the filter()
function to do so). To recap, our whole my_post.cpp should look like this:

#include <gst/gst.h>

#include <iostream>

#include "my_post.hpp"

#include "hailo_detection.hpp"
#include "common/common.hpp"

http://localhost:44913/hailo/core/hailo/gstreamer/libs/postprocesses/common/labels.hpp
https://cocodataset.org/#home
http://localhost:44913/hailo/core/hailo/gstreamer/libs/postprocesses/common/common.hpp

Hailo Tappas | User Guide

162/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

std::vector<DetectionObject> demo_detection_objects()

{

 std::vector<DetectionObject> objects; // The detection objects we
will eventually return

 DetectionObject first_detection = DetectionObject(0.2, 0.2, 0.2,
0.2, 0.99, 1);

 DetectionObject second_detection = DetectionObject(0.6, 0.6, 0.2,
0.2, 0.89, 1);

 objects.push_back(first_detection);

 objects.push_back(second_detection);

 return std::move(objects);

}

// Default filter function

void filter(HailoFramePtr hailo_frame)

{

 // Get the output layers from the hailo frame.

 std::vector<HailoTensorPtr> tensors = hailo_frame->get_tensors();

 std::vector<DetectionObject> detections = demo_detection_objects();

 // Update the frame with the found detections.

 common::update_frame(hailo_frame, detections);

 tensors.clear();

}

Recompile again and run the test pipeline, if all goes well then you should see the

original video run with no problems! But we still don't see any detections? Don't worry,

they are attached to each buffer, however no filter is drawing them onto the image

itself. To see how our detection boxes can be drawn, read on to Next Steps: Drawing.

Hailo Tappas | User Guide

163/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Next Steps

Drawing

At this point we have a working postprocess that attaches two detection boxes to each

passing buffer. But how do we get the GStreamer pipeline to draw those boxes onto the

image? With another hailofilter of course! Just as we were able to add a

hailofilter with an .so that added detection boxes, we can also add a second

hailofilter to the pipeline that draws those boxes onto the image.

The Tappas already comes with an .so that knows how to draw attached

DetectionObject instances: libdetection_draw.so. You can find the source for this

.so at libs/postprocesses/detection_draw.cpp, inside are good examples of not only

how to extract/draw DetectionObject instances from a hailo_frame, but also how to

extract landmarks and draw them.

Since our postprocess attaches detections as DetectionObject instances, we can

immediately make use of the libdetection_draw.so. All we need to do is insert

another hailofilter element into our pipeline after the first, but this time with the

path to libdetection_draw.so given in the so-path property instead of the path to

libmy_post.so:

gst-launch-1.0 filesrc
location=$TAPPAS_WORKSPACE/apps/gstreamer/x86/detection/detection.mp4
name=src_0 ! decodebin ! videoscale ! video/x-raw, pixel-aspect-
ratio=1/1 ! videoconvert ! queue ! hailonet hef-
path=$TAPPAS_WORKSPACE/apps/gstreamer/x86/detection/yolov5m.hef
debug=False is-active=true qos=false batch-size=8 ! queue leaky=no
max-size-buffers=30 max-size-bytes=0 max-size-time=0 ! hailofilter
so-path=$TAPPAS_WORKSPACE/apps/gstreamer/x86/libs/libmy_post.so
qos=false debug=False ! queue leaky=no max-size-buffers=30 max-size-
bytes=0 max-size-time=0 ! hailofilter so-
path=$TAPPAS_WORKSPACE/apps/gstreamer/x86/libs/libdetection_draw.so
qos=false debug=False ! videoconvert ! fpsdisplaysink video-
sink=ximagesink name=hailo_display sync=true text-overlay=false

Run the expanded pipeline above to see the original video, but this time with the two

detection boxes we added!

http://localhost:44913/hailo/core/hailo/gstreamer/libs/postprocesses/detection_draw.cpp

Hailo Tappas | User Guide

164/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

As expected, both boxes are labeled as person, and each is shown with the assigned

confidence. Obviously, the two boxes don't move or match any object in the video;

this is because we hardcoded their values for the sake of this tutorial. It is up to you to

extract the correct numbers from the inferred tensor of your network, as you can see

among the postprocesses already implemented in the Tappas each network can be

different. We hope that this guide gives you a strong starting point on your

development journey, good luck!

Multiple Filters in One .so

While the hailofilter always calls on a filter() function by default, you can

provide the element access to other functions in your .so to call instead. This may be

of interest if you are developing a postprocess that applies to mutliple networks, but

each network needs slightly different starting parameters (in the Tappas case, mutliple

flavors of the Yolo detection network are handled via the same .so).

So how do you do it? Simply by declaring the extra functions in the header file, then

pointing the hailofilter to that function via the function-name property.

Let's look at the yolo networks as an example, open up

libs/postprocesses/yolo_postprocess.hpp to see what functions are made available to

the hailofilter:

#ifndef _HAILO_YOLO_POST_HPP_

#define _HAILO_YOLO_POST_HPP_

#include "hailo_frame.hpp"

G_BEGIN_DECLS

void filter(HailoFramePtr hailo_frame);

void yolov3(HailoFramePtr hailo_frame);

void yolov4(HailoFramePtr hailo_frame);

void yolov5(HailoFramePtr hailo_frame);

void yolov5_no_persons(HailoFramePtr hailo_frame);

G_END_DECLS

#endif

http://localhost:44913/hailo/core/hailo/gstreamer/libs/postprocesses/yolo_postprocess.cpp
http://localhost:44913/hailo/core/hailo/gstreamer/libs/postprocesses/yolo_postprocess.hpp

Hailo Tappas | User Guide

165/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Any of the functions declared here can be given as a function-name property to the

hailofilter element. Condsider this pipeline for running the Yolov5 network:

gst-launch-1.0 filesrc
location=$TAPPAS_WORKSPACE/apps/gstreamer/x86/detection/detection.mp4
name=src_0 ! decodebin ! videoscale ! video/x-raw, pixel-aspect-
ratio=1/1 ! videoconvert ! queue leaky=no max-size-buffers=30 max-
size-bytes=0 max-size-time=0 ! hailonet hef-
path=$TAPPAS_WORKSPACE/apps/gstreamer/x86/detection/yolov5m.hef
debug=False is-active=true qos=false batch-size=1 ! queue leaky=no
max-size-buffers=30 max-size-bytes=0 max-size-time=0 ! hailofilter
function-name=yolov5 so-
path=$TAPPAS_WORKSPACE/apps/gstreamer/x86/libs//libyolo_post.so
qos=false debug=False ! queue leaky=no max-size-buffers=30 max-size-
bytes=0 max-size-time=0 ! hailofilter so-
path=$TAPPAS_WORKSPACE/apps/gstreamer/x86/libs//libdetection_draw.so
qos=false debug=False ! videoconvert ! fpsdisplaysink video-
sink=ximagesink name=hailo_display sync=true text-overlay=false

The first hailofilter above that performs the post-precess points to

libyolo_post.so in the so-path, but it also includes the property function-
name=yolov5. This lets the hailofilter know that instead of the default filter()
function it should call on the yolov5 function instead.

Hailo Tappas | User Guide

166/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

Writing Your Own Python Postprocess

Overview

If you want to add a network to the TAPPAS that is not already supported, then you will

likely need to implement a new postprocess. Fortunately with the use of the

hailopython, you don't need to create any new GStreamer elements, just provide a

Python module that applies your post-processing!

In this guide we will go over how to create such a python module and what

mechanisms/structures are available to you as you create your postprocess.

Getting Started

hailopython requires a module and a Python function.

Python module template

Here is a template for a Python module for the hailopython element.

Import hailo module

import hailo

Import GStreamer

import gi

gi.require_version('Gst', '1.0')

from gi.repository import Gst

Create 'run' function, that accepts 2 parameters - a Gst.Buffer
object and a hailo.HailoROI object.

`run` is default function name if no name is provided

def run(buffer: Gst.Buffer, roi: hailo.HailoROI):

 print("My first Python postprocess!")

To call it, create a pipeline with hailopython:

gst-launch-1.0 videotestsrc ! hailopython
module=$PATH_TO_MODULE/my_module.py ! autovideosink

Extracting the tensors

One of the first steps in each postprocess is to get the output tensors.
This can be

done by one of roi.get_tensor(tensor_name) or roi.get_tensors()

def run(buffer: Gst.Buffer, roi: hailo.HailoROI):

 for tensor in roi.get_tensors()

 print(tensor.name())

 my_tensor = roi.get_tensor("output_layer_name")

 print(f"shape is
{my_tensor.height()}X{my_tensor.width()}X{my_tensor.features()})

Hailo Tappas | User Guide

167/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

After doing that you might want to convert this object of type HailoTensor to a numpy

array on which you can perform post-processing operations more conveniently.
This is

a fairly simple step, you just use np.array on a given HailoTensor.

Notice that np.array has a parameter that determines whether we copy the

memory or using the original buffer.

def run(buffer: Gst.Buffer, roi: hailo.HailoROI):

 my_tensor = roi.get_tensor("output_layer_name")

 # To create a numpy array with new memory

 my_array = np.array(my_tensor)

 # To create a numpy array with original memory

 my_array = np.array(my_tensor, copy=False)

There are some other methods in HailoTensor, you are welcome to perform

dir(my_tensor) or help(my_tensor).

Adding results

After you process your net results and come up with post-processed results, you can

use them however you want.
Here we will show you how to add them to the original

image in order to draw them later by hailooverlay element.
In order to add post-

processed result to the original image - use the roi.add_object method.
This method

adds a HailoObject object to our image. There are several types of objects that are

currently supported:
hailo.HailoClassification - Classification of the image.

hailo.HailoDetection - Detection in the image.
hailo.HailoLandmarks - Landmarks in the

image.

You can create one of these objects and then add it with the roi.add_object method.

def run(buffer: Gst.Buffer, roi: hailo.HailoROI):

 classification = hailo.HailoClassification(type='animal',
index=1, label='horse', confidence=0.67)

 # You can also create a classification without class id (index).

 classification = hailo.HailoClassification(type='animal',
label='horse', confidence=0.67)

 roi.add_object(classification)

You can also add objects to detections:

def run(buffer: Gst.Buffer, roi: hailo.HailoROI):

 # Adds a person detection in the bottom right quarter of the
image. (normalized only)

 person_bbox = hailo.HailoBBox(xmin=0.5, ymin=0.5, width=0.5,
height=0.5)

 person = hailo.HailoDetection(bbox=person_bbox, label='person',
confidence=0.97)

 roi.add_object(person)

 # Now, Adds a face to the person, at the top of the person.
(normalized only)

 face_bbox = hailo.HailoBBox(xmin=0.0, ymin=0.0, width=1,

Hailo Tappas | User Guide

168/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

height=0.2)

 face = hailo.HailoDetection(bbox=face_bbox, label='face',
confidence=0.84)

 person.add_detection(face)

 # No need to add the face to the roi because it is already in the
person that is in the roi.

Next Steps

Drawing

In order to draw your postprocessed results on the original image use the hailooverlay

element.
It is already familiar with our HailoObject types and knows how to draw

classifications, detections, and landmarks onto the image.

gst-launch-1.0 filesrc
location=$TAPPAS_WORKSPACE/apps/gstreamer/x86/detection/detection.mp4
name=src_0 ! decodebin \

! videoscale ! video/x-raw, pixel-aspect-ratio=1/1 ! videoconvert !
queue leaky=no max-size-buffers=30 \

max-size-bytes=0 max-size-time=0 ! hailonet hef-
path=$TAPPAS_WORKSPACE/apps/gstreamer/x86/detection/yolov5m.hef \

debug=False is-active=true qos=false batch-size=8 ! queue leaky=no
max-size-buffers=30 max-size-bytes=0 \

max-size-time=0 ! hailopython
module=$TAPPAS_WORKSPACE/apps/gstreamer/x86/detection/my_module.py
qos=false ! queue \

leaky=no max-size-buffers=30 max-size-bytes=0 max-size-time=0 !
hailooverlay qos=false ! videoconvert ! \

fpsdisplaysink video-sink=ximagesink name=hailo_display sync=true
text-overlay=false

This is the standard detection pipeline with a python module for post-processing.

Multiple functions in one Python module

There is an option to write several post-process functions in the same module.
In order

to run each of them you just need to add the function property to the hailopython
element:

import hailo

import gi

gi.require_version('Gst', '1.0')

from gi.repository import Gst

def post_process_function(buffer: Gst.Buffer, roi: hailo.HailoROI):

 print("My first Python postprocess!")

def other_post_function(buffer: Gst.Buffer, roi: hailo.HailoROI):

 print("Other Python postprocess!")

Hailo Tappas | User Guide

169/169 Confidential and Proprietary | Copyright © 2022– Hailo Technologies Ltd.

gst-launch-1.0 videotestsrc ! hailopython
module=$PATH_TO_MODULE/my_module.py function=other_post_function !
autovideosink

	Disclaimer and Proprietary Information Notice
	Copyright
	General Notice

