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ABSTRACT 
The number of resident space object (RSO) orbit state solutions is rapidly increasing 
due to the increased RSO population and to the rise in commercial providers. 
Contributing to this, the operational acceptance of the Space Fence is projected to 
increase the RSO catalog size upwards of 100,000 objects. With multiple state 
solutions for a single RSO at any given instant in time, how can a satellite operator, 
orbit analyst, intelligence analyst, or decision maker determine which one is 
“correct?” This paper explores the value of aggregating, curating, and comparing 
these opinions from government (18th Space Control Squadron) and commercial 
providers (LeoLabs and Numerica), exposing insights that would normally go 
undetected. Precise orbit information available on various RSOs, obtained from 
Spire Global and MITRE, can be used to assess the accuracy of the various state 
solutions. Results show that commercial capabilities rival, if not exceed, performance 
of the existing public space catalog. Because each data source has their own 
strengths and weaknesses in different settings (orbit regime, global coverage, RSO 
type, etc.), a scheme that coalesces the various satellite state estimates into one, 
most accurate solution is paramount. To fuse this data into a best solution, a 
supervised learning regression model is developed that uses already processed 
provider state solutions propagated some amount of time and compared to truth 
data. Over a large spread of objects in GEO, this model is able to learn how to 
characterize the uncertainty developed during propagation and apply this to other 
objects in GEO to improve their solutions when compared to the standalone 
estimates from the various providers. This is of high value when accurate state 
predictions are required after propagation over many hours, such as conjunction 
assessment.  
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1. Introduction 
    The acceleration of the space population is staggering. With mega-constellations 
planned by various companies (e.g. SpaceX, Planet, OneWeb, Telesat, Blue Origin, 
etc) over the next few years, an order of magnitude increase in the population of 
active satellites within the next decade is not only imaginable, but perhaps likely. A 
recent search of space-track.org uncovers that approximately 5,500 active satellites 
are in orbit, with the addition of ~400 satellites launched in 2019 alone. Further, the 
vast majority of resident space objects (RSO) are debris, making the total tracked 
number of objects in orbit ~20,000. The operational acceptance of the Space Fence 
is projected to increase the RSO catalog size upwards of 100,000 RSOs by 
significantly lowering the RSO detection threshold [1]. Space Domain Awareness 
(SDA) and Space Traffic Management (STM) are clearly of paramount importance. 
    In addition to the rapid RSO population growth, the number of data providers is 
also growing swiftly. U.S. Space Command’s (USSPACECOM) Space Surveillance 
Network is highly specified, verified and validated, but such specification is 
impractical for the influx of commercial providers. This creates the demand to not 
only aggregate, but curate and fuse the data before analytics can be meaningfully 
applied. During the recent SACT 19-3 (Sprint Advanced Concept Training), a week-
long commercial-government exercise, in part to showcase advanced Commercial 
SSA capabilities to the Department of Defense and Department of Commerce, 
Slingshot Aerospace ingested RSO state data from several data providers 
(USSPACECOM, Numerica, and LeoLabs) to understand what curation was needed 
for various data providers. The data was curated and compared with calibration data 
(from Spire and MITRE). All of the data were ingested from the Unified Data Library 
(UDL), for simplicity. 
    Errors in the estimation of an object’s position in space, can be introduced from 
both propagation and measurements (and associated modeling), and can be random 
(or aleatory), systematic (or epistemic), or even blunders. These errors can be very 
difficult to eliminate via improved modeling, especially when the source modeling is 
unknown. In this case, one might seek to learn, approximate and account for these 
unknown errors. The first objective of this study was to curate the data and examine 
the errors associated with multiple providers. The second objective was to determine 
if an improved solution could be generated at any point in time, including in the 
future, by fusing state data from multiple providers.  
    The goal is to be able to use any state information from any provider, including 
TLEs, which do not contain uncertainty information. Similar studies have used TLEs 
as pseudo-observations [3], but not with a variety of providers and actual truth data 
(discussed in detail below). A machine learning (ML) approach is considered to 
determine if we can better account for the systematic errors in the propagation, then 
use that knowledge to generate an improved, fused solution.  ML methods have 
recently been implemented for astrodynamics objectives [4-7]. This includes better 
orbit prediction models and orbit determination of multiple RSOs. Peng and Bai [8] 
have also explored using support vector machines (SVMs) to improve the orbit 
prediction accuracy. Improvement was seen, however, only a single source (TLEs) 
was considered and the truth data was simulated.  
    The paper is laid out as follows. A quick description of the sources of data used in 
this paper is presented in Section 2 followed by a state error comparison in different 
orbital regimes in Section 3. Then, the method of producing a fused solution from 
multiple provider states is explored in Section 4.  
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2. Data Description 
    Sprint Advanced Concept Training (SACT) exercises are government-commercial 
collaboration exercises in which several real-world (and some simulated) events and 
scenarios unfold in the space domain. One of the main objectives of the exercise is 
to explore and showcase commercial capabilities to support SDA (DoD) and STM 
(DoC). During the SACT 19-3 exercise in December 2019, Slingshot Aerospace 
ingested RSO state data from LeoLabs, Numerica, U.S. Space Command’s 18th 
Space Control Squadron (18 SPCS), Spire Global, and MITRE Corporation. 18 
SPCS provided TLEs, while all others provided state vectors (SV), which are 
cartesian position and velocity. All of the data was curated and the LeoLabs, 
Numerica, and 18 SPCS (“providers”) data was compared with precise states 
supplied by Spire and MITRE (“calibration”). The state data from each source is 
described in the following. 

2.1 LeoLabs 
    Orbital state estimations at LeoLabs are achieved via an UKF [9, 10]. This class of 
algorithm pairs the computational efficiency of a Kalman filter with the unscented 
transform, which attempts to more accurately render covariance evolution in 
nonlinear systems by propagating a set of sample points using the full physical 
model. Both orbit determinations and propagations provided by LeoLabs make use 
of the Orekit open source orbital dynamics library5, with the following forces 
considered: non-uniform gravity (to degree and order 42), atmospheric drag (using 
the NRLMSISE-00 model), solar radiation pressure, third body forces from the Sun 
and Moon [11]. 
    Computations of new orbital state estimations are initiated by a transit of the target 
through a LeoLabs radar and are performed at most once per hour in a cloud-based 
computer cluster. For targets in polar orbits, new estimations are calculated as often 
as six times per day. Each estimation is coupled to an eight-day propagation window 
that looks one day backward from state epoch and seven days forward. To assess 
the quality of state estimations, comparisons to ILRS-provided propagations are 
computed automatically for a 48-hour period centered on state epoch. 

2.2 Numerica 
    Numerica collects data with a worldwide network of optical sensors, both fixed 
arrays and taskable telescopes.  These observations are correlated, and orbit 
determination is performed by MFAST (Multiple Frame Assignment Space Tracker) a 
multi-target, multi-sensor tracking capability.  Observations and state vectors are 
pushed out to the UDL and are also available on Numerica’s user interface.  This 
data is processed with little manual intervention and mis-tags are often corrected 
within minutes/hours, but it is currently impossible to push those corrections due to 
UDL limitations. 
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2.3 18th Space Control Squadron (18 SPCS) 
    The 18th Space Control Squadron (18 SPCS), assigned to the United States 
Space Command, is tasked with maintaining the definitive “catalog” of all RSOs, 
which it provides via publicly available TLEs (two-line elements). The TLEs are 
“mean” values obtained by removing periodic variations in a particular way. The 
TLEs are automatically generated with either a near-Earth or deep-space model, 
depending on the period of the RSO orbit [12]. 

2.4 Spire 
    Precise orbit determination of each Spire satellite center of mass is performed by 
utilizing multiple Global Navigation Satellite System (GNSS) signals simultaneously 
collected through a zenith-pointing antenna. Dual-frequency GNSS observables of 
carrier phase and pseudo-range are combined together with an orbit model and 
processed through a Kalman filter to produce position and velocity estimates during 
the period of GNSS receiver operation. Estimates of position and velocity are 
accurate to approximately 10-20 cm and 0.1 mm/s, respectively. Accuracy values 
have been estimated by analyzing overlapping orbit arcs and comparing solutions to 
those computed by the Bernese orbit processing software. 

2.5 MITRE 
    MITRE supplies calibration ephemeris data for a large set of GNSS satellites (e.g. 
GPS, GLONASS, Galileo, etc.). Each GNSS satellite publishes its location on a 
schedule – every 30 minutes, hour, 2 hours, etc. – depending on how that country 
sets up their system.  A GPS-style receiver takes those published values and 
propagates forward to “now” using that system’s propagation algorithm.  MITRE 
takes those self-published positions from the satellites, uses that system’s 
propagation algorithm to generate state vectors in 5-minute increments, and then 
publishes these SVs to the UDL. 

3. State Error Analysis  
    The first objective was to determine the accuracy of various providers through a 
state comparison by orbit regime. After the data was ingested, it was separated into 
“provider” data (Numerica, LeoLabs, and 18th SPCS) and “calibration” data (Spire 
and MITRE). For each provider state (TLE or SV), the calibration data was searched 
for corresponding SVs (i.e. same RSO and near the same time). To avoid 
propagation errors, the calibration data was interpolated to the time of the provider 
state and a position error was computed. The position error was then transformed 
into a satellite-based reference frame to better understand the errors: radial, in-track, 
cross-track (RIC). The radial direction points in the opposite direction from Earth, the 
cross-track direction is the orbit normal, and the in-track direction completes the 
frame by aligning itself near the velocity vector. With the error results, analytics can 
be performed, and any issues found in the data could be fed back into the data 
curation function (e.g. mis-matched coordinate frames or time representations, more 
details below). This process is illustrated in Figure 1. 
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Figure 1. State Comparison Process 

    Once the data issues were mitigated, statistics were compiled across all provider 
data that corresponds to available calibration data.  

Table 1 and Figure 2 show the results for GEO/MEO where 18 SPCS is the 
government provider, Numerica is the commercial provider, and MITRE is the 
calibration provider. The calibration data is based on various GNSS systems and is 
typically accurate to within a few meters [13]. MITRE delivered calibration for 117 
RSOs. For those 117 RSOs, Numerica delivered 1363 SVs and 18 SPCS delivered 
437 TLEs. After suspected cross-tags were either corrected for or removed, 1039 
Numerica SVs and 397 18th SPCS TLEs are compared to calibration states to 
compute the associated position error. 
 

 
Figure 2. MEO/GEO Regime: Position errors associated with Numerica and 18 SPCS as compared to 

MITRE calibration states 
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Figure 3. MEO/GEO Regime: RIC errors associated with Numerica and 18 SPCS as compared to 

MITRE calibration states 

 

Table 1. GEO Regime. RMS of Position (RSS), Radial, In-Track, and Cross-Track errors, comparing 
provider state estimates against calibration data interpolated to the time of the state estimate 

 
Numerica SVs 18th SPCS TLEs 

Position RMS 1.342km 3.272km 

Radial RMS 0.690km 1.09km 

In-Track RMS 0.663km 2.712km 

Cross-Track RMS 0.790km 1.436km 

 
    Figure 4 and Table 2 and show the results for LEO where 18th SPCS is the 
government provider, LeoLabs is the commercial provider, and Spire is the 
calibration provider. The calibration data is based on Spire’s precise orbit 
determination, described previously, and is generally accurate to within 10-20 cm.  
Spire delivered calibration for 18 RSOs. For those 18 RSOs, LeoLabs delivered 35 
SVs and 18 SPCS delivered 26 TLEs. 
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Figure 4. LEO Regime. Position errors associated with LeoLabs and 18th SPCS as compared to Spire 

calibration states. 

 
Figure 5. LEO Regime. RIC errors associated with LeoLabs and 18th SPCS as compared to Spire 

calibration states. 
Table 2. LEO Regime. RMS of Position (RSS), Radial, In-Track, and Cross-Track errors, comparing 
provider state estimates against calibration data interpolated to the time of the state estimate 

 
LeoLabs SVs 18th SPCS TLEs 

Position RMS 13.0m 303m 

Radial RMS 0.79m 69.1m 

In-Track RMS 7.99m 295m 

Cross-Track RMS 9.76m 16.9m 
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    From Figure 4, Figure 5 and Table 2 it is clear that commercial provider capability 
rivals, if not exceed, current publicly available information, especially in LEO. But that 
does not mean only one source should be considered. The right solution is a 
combination of all sources, where various strengths (global coverage, sensor 
accuracy/type) are accentuated and weaknesses are mitigated. 

4. State Fusion Methodology and results 
    Two different methods were explored to determine if an improved solution could 
be obtained at any point in time using a combination of two provider’s states. The 
first was a Kalman filter-based method where the provider states were used as 
observations in an unscented Kalman filter. Due to insufficient information about the 
modeling the state providers used and lack of uncertainty information, among other 
things, this method failed to improve upon the individual state solutions. 
    To contrast with the Kalman filter method, a machine learning based data fusion 
method was explored to attempt to properly account for systematic errors in the 
various source state solutions and/or orbit propagation. Various supervised machine 
learning models were utilized to determine if these errors could be properly identified 
and exploited. This analysis was applied to only the MEO/GEO data. The training 
and test data were generated from two different satellite state providers, 18 SPCS 
and Numerica, discussed above. Truth data were obtained from MITRE. States from 
each provider were ingested from December 16, 2019 to January 5, 2020 for 60 
RSOs. 
    The training data was generated as follows: For each RSO, the states from 
Provider A were extracted. For each of these states, a range of propagation times, 
numbering the amount of Provider B states there were for the RSO, were generated 
from a triangle distribution having a median of 6 hours and a lower and upper bound 
of 0 and 2 days respectively. This distribution was chosen based on how far a 
propagated state would be still used and considered valid for operational decisions. 
For each propagation time calculated, the state being considered and one of 
Provider B’s states were then propagated forward to this time, plus the amount of 
time required to reach the time of the next closest calibration state for the given 
RSO. Therefore, all provider states were at the same epoch. This process was 
repeated for each Provider A state solution for the given RSO. Then the whole 
process was repeated for Provider B for the given RSO. And finally, the process was 
repeated again for each RSO in the training data set. 
    This method minimized reusing the same initial data points to prevent overfitting 
while still producing enough training points to develop an accurate model. The 
propagation time of all the training data is represented in the histogram in Figure 6. 
We acknowledge that this dataset is not unique and that multiple variables can be 
adjusted, including reference frame and propagation time, but it will be shown that 
this particular dataset improved orbit prediction accuracy. The predictors from the 
training data were J2000 cartesian states and required propagation time from each 
provider (14 predictors). The propagator assumed a cannonball model and included 
a 20x20 gravity field, MSISE atmospheric density model, ocean tides, solar radiation 
pressure, and third body perturbations from the Sun and Moon. Of note, this is a 
different propagator than what was used to generate the original state solutions (the 
original propagator was not known).  
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Figure 6. Propagation time sample distribution for generated training data 

    Nineteen different ML regression models were explored using the training data 
with 5-fold cross validation to prevent overfitting using the MATLAB (R2019b) [14] 
implementation of regression models. Various combinations of predictors were 
studied including converting to orbital elements and only including the respective 
cartesian state variable matched with the response variable (i.e. only looking at a 
combination of 18th SPCS’ and Numerica’s X position to predict the truth X position). 
The best performing model proved to be a linear regression model with interaction 
terms [15], using all 14 predictors. The interaction terms allowed for the conditional 
effects of propagation time to be accounted for in the linear combination of the 
cartesian states. The use of all variables in the state allowed for correlations 
amongst the state variables during propagation to be exploited.  
    Twenty percent of the generated data (different RSOs) were set aside for testing 
purposes. For the sake of evaluation, the best solution is defined as the smallest 
value of the position difference between the calibration state and the provider/fused 
state. Errors in RIC were also explored. Propagation of the provider states followed 
the same distribution in Figure 6, so the following statistics include any propagation 
errors. Of the test data, the fused solution had the best solution 58% of the time, 18 
SPCS 18%, and Numerica 24% of the time. The metrics in Table 3 include varying 
propagation times and contain propagation errors between the two providers. See 
the State Error Analysis (section 3) for the actual provider state error comparison.  
 
Table 3. Machine learning fusion technique. RMS of Position (RSS), Radial, In-Track, and Cross-
Track errors, comparing individual provider and fused state estimates against calibration data 
propagated to the time of the calibration epoch closest to a triangle distributed propagation time (i.e. 
includes varying propagation error). 

 
Fused 

Solution 
18 SPCS 

TLEs 
Numerica 

SVs 

Position RMS (km) 3.006 5.470 6.277 

Radial RMS (km) 1.295 2.287 2.402  

In-Track RMS (km) 2.644 4.958 5.790  

Cross-Track RMS (km) 0.607 0.326 0.327 
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    Figures 7 and 8 and show the position errors between the generated solutions 
(providers and fused) and the calibration source at each test point. Overall, the fused 
solution outperforms the two providers by reducing the error by nearly 50%. Of note 
is the improvement seen when both providers’ solutions are used in the fused 
solution. The fused solutions using just a single provider actually performed worse 
than the corresponding provider’s direct solutions. Including both providers in the 
fused solution allows for a more complete extraction and characterization of the 
propagation errors. We contend that the interaction terms of the ML model provide a 
model that accounts for the correlations between the propagation errors from 
independent state representations, allowing it to better mitigate fused propagation 
errors. Also, the test data does not contain any of the same RSOs as the training 
data, resulting in the advantage that this model can be used accurately cross RSO 
(but in the same orbit regime).  

 
 
Figure 7. Machine learning fusion technique results. Position errors associated with Numerica, 18th 
SPCS, and fused solutions as compared to MITRE calibration states. 
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Figure 8. Machine learning fusion technique results. RIC errors associated with Numerica, 18th 

SPCS, and fused solutions as compared to MITRE calibration states. 

    Propagation time is an important variable in this analysis. Figure 9 shows how 
many times each solution is best as a function of total propagation time (18SPCS 
prop time + Numerica prop time). It shows that the fused method is the best most 
often after about 15 hours of total propagation, while within that time period 
Numerica’s solution dominates.  

 
Figure 9. Number of times each solution was the best at an instant in time versus total propagation 

time of the providers 

    Examination of additional models is required to properly fuse the states at shorter 
propagation times, likely due to propagation not being the dominant source of error. 
At these short propagation times, random (or aleatory) errors may dominate over 
systematic (or epistemic) errors, making them more difficult to train on and 
overcome. Other types of predictors including covariance terms might be useful to 
completely define this short (or zero) propagation time region.  
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5. Conclusions 
    With the exponentially increasing amount of objects in space and an increasing 
diversity of observation providers, both government and commercial, to track them, it 
is of paramount importance to not only curate this data to allow for comparison and 
uncover insights, but to fuse the data into a single, more confident picture of where 
RSOs are and will be. A comparison of multiple providers show that commercial 
sources are at par, if not exceed, the accuracy of openly available data from space-
track.org in the form of TLEs. 
    To find the best solution at any given time, including the future, a data fusion 
method was explored. Using a supervised ML model, we were able to properly 
account for the error introduced in the propagation of a satellite state and produced a 
fused result of two different providers that reduced the RMS of the original solutions 
by nearly 50%. This improvement was realized on RSOs other than what the model 
was initially trained on, demonstrating that these improvements may apply to all 
RSOs in a given regime. Future work will involve varying the predictors used in the 
model to better account for propagation time and to take advantage of RSO type and 
also include more sources of data. Additionally, methods will be explored to take 
provider solution uncertainties into account. 
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