
INFORMATION TECHNOLOGY ASSETS
MIGRATION GUIDE

Moving valuable applications and data to the cloud

Portfolio Analysis process uses similar quadrants:
Modernize, Support & Maintain, Shoot & Replace, or
Do Nothing.

Solving the stack problem.
Migration using automated tools addresses a specific
problem set with both application and data assets:
how to update the technology stack of assets that
are providing real value but are based on outdated
technology. As a general rule of thumb, applications or
database systems that are working well and providing
value but are based on out-of-support or obsolete
components, languages, OS versions, or libraries benefit
from automated migration to new technology. Assets
that are also technologically lagging but are also not
providing value are candidates for rewrite.

WHY MIGRATE?

Entropy is the thermodynamic principal of the
universe’s unstoppable motion from order to disorder.

Information technology (IT) assets have their own
entropy as they age; this entropic decay can be thought
of as the legacy problem. Physical assets like laptops,
monitors, and servers show their age visually—what
looks more dated than a CRT monitor on a desk?

The legacy problem
Software and data, on the other hand, may show fewer
visual clues of their age unless one looks under the
hood at the source code of applications or scripts and
schemas of a database or data warehouse. Legacy
assets may look fine on the surface but be crumbling
below.

Legacy assets are expensive, risky, and
dangerous
As IT assets age into the legacy stage, they may
continue to be perfectly functional yet create
undesirable side effects, including:

•	 Human resources cost more: as developers trained
in old programming languages and tools age out of
the workforce, replacement costs soar and ongoing
maintenance of apps becomes expensive.

•	 Older applications and database systems
frequently reflect security models from their origin
date, providing inadequate protection against
modern, more sophisticated attack vectors.

•	 Systems based on out-of-vendor-support platforms
are at risk of sudden failure when OS updates or

patches are deployed.

•	 Similarly, out-of-support components and
dependencies can place the organization into non-
compliance with IS/IT governance requirements.

•	 Finally, legacy systems can block the organization
from implementing modern, efficient engineering
practices.

Should you migrate your assets?
Deciding how to deal with legacy assets implies a
methodology to evaluate each asset—both applications
and data assets—in terms of both business value
and technical quality. Gartner’s TIME approach
puts applications into four buckets: Tolerate, Invest,
Eliminate, or Migrate. Similarly, the Mobilize.Net

PLANNING THE MIGRATION

A successful migration project begins with a well-
crafted plan. Thorough planning can help reduce or
eliminate unforeseen problems and roadblocks down
the road.

Recommended migration planning
process
1.	 Inventory the application and data asset portfolio.

This preliminary step can be time consuming but
is extremely vital to the modernization effort.
Capture metadata such as owner, technology
stack, purpose, user list/description, business value
rating and technical quality rating.1

2.	 Classify each asset according to your quadrant
methodology. Perhaps the most important
category is the “sunset” or “retire” quadrant;
one large IT organization was able (following
an exhaustive inventory process) to retire
approximately 30% of their custom applications,
replacing them with low-code or no-code
alternatives. Carefully consider whether to migrate
or rewrite assets which are still vital but suffer
from technical debt or obsolete stack. Rewriting
promises enhanced functionality and customer
value but is fraught with risk for both budget and
schedule.2

3.	 Prioritize projects based on a value to cost analysis.
Value includes business function, size of user

1	 While it’s important to inventory and classify physical IT assets
(desktops, servers, laptops, etc) that’s beyond the scope of this paper.

2	 https://www.atspoke.com/blog/it/reasons-for-it-project-failure/

base, and potential risks of doing nothing. Costs
analysis should include data- and experience-based
resource and time estimates as well as opportunity
costs (for example, if your best and brightest are
rewriting legacy applications, they are unavailable
to add customer value to more important apps).

The Mobilize.Net Migration Blueprint
With over 20 years experience migrating application
and database solutions, Mobilize.Net has developed
a proven migration planning process: the Migration
Blueprint. This one-week on-site engagement by senior
engineering staff identifies critical issues with the
migration project including:

•	 Current and planned system architecture

•	 Existing components, dependencies, and libraries

•	 Test plan including developing test cases for both
existing and planned applications

•	 Project breakdown including milestones, resource
requirements, manual effort required, and new
engineering/development where needed.

The output of the Migration Blueprint is a detailed plan
highlighting outstanding issues and recommendations
for remediation. The level of detail is sufficient for
an internal team to fully plan resource and schedule
requirements, or to get a quote from an external vendor
for a turn-key project delivery. Following the Blueprint
project, many of Mobilize.Net’s customers engage us
to deliver a completely migrated application, including
full visual and functional equivalence, as evidenced by
passing a rigorous set of functional tests.

https://www.atspoke.com/blog/it/reasons-for-it-project-failure/

MIGRATING CODE AND DATA

Migrating code and data to the cloud opens new value
possibilities and can reduce costs. Automated tools
make it both efficient and low-risk.

Migrating custom applications
As discussed above, the first step in any migration
project is a well-formed plan. Following the planning
phase, the organization can focus on the resource
or engagement model that best suits their specific

situation.

Based on organization-wide IT priorities and available
resources, management can determine what level of
engagement makes sense for each migration project,
from full ownership to complete out-sourcing.

Mobilize.Net has developed several customer-facing
engagement models for application migration:

License only

Mobilize.Net provides licensed tools and technical
support for the customer organization to perform all
the migration work themselves. Best for organizations

with experience in both the original and destination
technology platforms and languages.

Compilation

Mobilize.Net migrates the customer code to the target
platform and gets all the code to the compilation state.
Some code gets stubbed out; this engagement model
is best for organizations that have limited technical
resources and want to reserve their staff for the last
mile work.

Visual Equivalence

Mobilize.Net migrates the code, eliminates compiler
errors, and updates the target code until all visual UI
elements will render. Best for organizations who want
to reserve their in-house resources for the final test and
bug-fixing stage.

Functional Equivalence

Mobilize.Net migrates the code, performs all last mile
work, and debugs the code until it passes the full
suite of customer-provided test cases. Normally these
tests are developed using the source application for
the reference specification; functional equivalence is
designed to be faithful to the UI and functionality of
the original application.

For more information on the migration process, see
“Choosing a migration partner” below.

The cloud is the goal
Following the advent of the personal computer in the
1980s, organizations large and small found these simple
and affordable devices an ideal replacement for more
expensive mainframe and mini-computer workstations,
and the era of client/server applications development
was born. In the 1990s, the availability of simple
programming tools like Visual Basic and PowerBuilder

made building front-end applications for database
servers cheap and easy. Later, the release of Microsoft
.NET further simplified creation of rich desktop
applications.

The appeal of hosting applications in public cloud
services like AWS or Azure was given a boost during
the pandemic in early 2020 when workers suddenly
were forced to do their jobs from home offices; many
of these mission critical desktop applications were
captive to a now vacant office. Organizations reacted
by adopting a “lift and shift” approach to move those
workloads into the cloud so workers could continue
to access them. However, this lift and shift approach
is only a partial solution, and doesn’t address the real
issue of platform obsolescence at all. It simply moves
the problem from on-premise to public cloud.

The real advantages of cloud deployment—DevOps,
CI/CD, elastic load balancing, real time monitoring,
containerization, and more—requires cloud native
applications, not just desktop apps hosted in a virtual
environment. Migration projects that do not re-platform
desktop apps to be cloud native are wasting an
enormous opportunity.

Migrating databases and data
warehouses
Just as cloud deployment offers many benefits to
applications, it offers equal benefits to data assets as
well. Moving the data in any data warehouse (Teradata,
Oracle, SQL Server and so forth) to the cloud is trivial
with often the biggest challenge being the bandwidth
necessary to push terabytes of data up to the
provider—alternatively, data can be copied to external
hard disks which can be shipped directly to Amazon or

Microsoft.

A harder problem is the migration of on-prem
data warehouses with complex scripts and stored
procedures to a cloud environment. Snowflake® is
making rapid gains moving customers from more
traditional systems like Teradata and Oracle to their
Data Cloud.

Mobilize.Net is a key migration
partner for Snowflake, having built
tools to unblock Teradata and
Oracle customers from adopting
the Snowflake data cloud. Our
technology—similar to how our
application migration tools work—
parses SQL (DDL, DML, and
everything else), PL/SQL (sprocs,
macros, functions, etc.), and
proprietary scripts (such as BTEQ and
all its extensions in Teradata)—and
generates Snowflake SQL, Python,
and JavaScript fully commented code.

Automated code conversion
using Mobilize.Net SnowConvert
dramatically reduces the time, cost,
and risk of moving from traditional
data warehouse systems to Snowflake,
making the eventual savings even
more attractive.

CHOOSING A MIGRATION
PARTNER

Migration projects fall into the category of large
initiatives that are both infrequent and consequential.

Infrequent because most organizations have a
sufficiency of experience both creating new software
and data assets and maintaining those over time.
Migrating to a new platform, however—except in some
rare situations—is not something done often enough for
the organization to build experience and expertise.

Consequential because typically only critical, large, and
complex applications and data systems are candidates
for migration or re-platforming. As described earlier,
these systems continue to offer real business value to
the organization, but are held back by old or obsolete
languages, platforms, and runtimes. Failing to move the
system forward to a more modern technology stack
could have serious negative consequences for the
organization.

Thus the choice of a partner for a migration partner is a
critical decision in achieving a positive outcome.

DIY Migration
The “do it yourself” approach is popular with
organizations that have deep experience in developing
software applications or database/data warehouse
systems. Independent software vendors (ISVs)
are prone to making this their default choice, as
software development is their metier. The key to a
successful outcome with the DIY approach is to bring
highly automated tooling into the fold, allowing the
efficiencies of computer aided software engineering

(CASE) to be a vital part of the project methodology.

The organization pursuing a DIY approach to legacy
migration should look at all the available tooling and
preferably test different tool sets on their own code
base in order to make accurate appraisals of the
efficacy of each and estimates of the effort that will
be required for the total project. The vendor’s level of
support and experience should also be a major factor in
any decision.

The use of internal resources for a migration project
should be considered carefully. While seemingly simple
(re-create an existing application or data system using
a newer platform, language, or runtime), in reality these
projects can turn out to be highly complex. Many
organizations are reluctant to deploy their “best and
brightest” on legacy projects instead assigning “less
than the best” engineering talent, further adding to the
risk of the project missing key requirements, schedule,
or budget targets.

Offshore Migration
More and more technology creation and maintenance is
being driven to offshore providers in countries like India
and Ukraine. Systems Integrators (SIs) are eager to take
on these kinds of large data and application migration
projects, sometimes using their own tools to speed up
the migration process.

Organizations choosing to follow this path should
carefully review the selected vendor’s experience and
track record in projects directly similar to the legacy
system to be migrated. The offshore promise may be to
replace experience and/or advanced tooling with low-
cost bodies thrown at the project. Poor decisions by the
offshore team due to a lack of expertise and relevant
experience may lead to long-term issues and costs for

the organization that owns, operates, and will maintain
the migrated code.

Vendor-assisted migration
The final option is to draw on the service component of
a vendor who specializes—ideally exclusively—in legacy
migration tool development.

For over 20 years Mobilize.Net has focused solely on
building highly automated, AI-assisted tools to move
legacy source code to modern platforms, languages,
and runtimes. Beginning with the Visual Basic Upgrade
Wizard, commissioned by Microsoft to be a key part
of Visual Studio in order to ease the transition for
VB6 developers to the .NET Framework, Mobilize.
Net has subsequently built highly automated tools to
move a variety of desktop programming languages to
cloud native, as well as more recently building tools for
migration to Snowflake Data Cloud.

But in addition to tools, Mobilize.Net has worked with
hundreds of organizations—encompassing F500, state
and local government, ISVs, and global SIs—to deliver
turnkey migration projects of systems frequently in
the millions of lines of code (LOC). Organizations that
recognize either they lack or decline to utilize internal
resources for these highly-specialized projects are
able to get assistance from Mobilize.Net for partial
to complete system migration, including unique
customizations to further automate conversion of
workload-specific code patterns.

Additional information and resources are available in
the Mobilize.Net Digital Transformation Starter Kit here:
https://www.mobilize.net/resources/guides/digital-
transformation-starter-kit

https://www.mobilize.net/resources/guides/digital-transformation-starter-kit
https://www.mobilize.net/resources/guides/digital-transformation-starter-kit

