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ABSTRACT 
One critical aspect of overall water supply management is to 
monitor drinking water quality across the entire water 
delivery network. Compared with a model-based approach 
for water quality prediction, which simulates the real water 
quality decaying process using expert knowledge, a data-
driven approach requires less business understanding.  

This paper proposes a data-driven method that provides 
water quality prediction within the entire Woronora delivery 
system in Sydney. Specifically, the key factors relating to 
water quality are identified through factor analysis. A 
Bayesian parametric decay model is formulated using the 
key factors to predict water quality. To estimate the water 
travel time, which links the upstream (reservoir) data to the 
downstream (resident) data, the hydraulic system is 
employed to capture the topology of the delivery system. 
Moreover, the uncertainties of both data and the model are 
analysed to define the boundaries of prediction for better 
decision making.  

The effectiveness of the proposed method has been 
validated using the data collected by online water quality 
analysers deployed in the distribution system. This work has 
established a successful initiative to improve the overall 
water supply management for the entire Woronora delivery 
system. 

Key Words: Water quality, predictive analytics, total chlorine 
residual, machine learning. 

INTRODUCTION 
Ensuring the delivery of clean and safe drinking water is a 
key objective for all water utilities. Within chloraminated 
networks, maintaining total chlorine levels is a key driver for 
the overall water quality. To investigate the technical and 
practical feasibility of applying innovative machine learning 
models to dynamically optimise the network operation to 
meet key performance indicators for water quality, Sydney 
Water, Veolia, and UTS Data Science Institute have studied 
the Woronora delivery system (see Figure 1) as a test use 
case. This is part of the 25 years of collaborative partnership 
of an innovative science and technology program between 
Sydney Water and Veolia for the Woronora and Illawarra 
Water Filtration Plants. 
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Figure 1. Woronora delivery system. 

 

The Woronora delivery system includes 12 reservoir zones 
and supplies 80 ML of water per day to 210,000 customers 
in 42 separate pressure zones. Under normal operating 
conditions, the majority of the water is supplied from 
Woronora dam, with some water coming from Prospect 
Water Filtration Plant (WFP) via Allawah and into Sutherland 
reservoir.  

The supply network is designed and operated to ensure 
three key objectives are met: 1) supply continuity, 2) water 
quality, and 3) pressure. The first ensures that water will 
remain available even in the event of a major disturbance 
such as the loss of power to pumps (minimum of eight hours 
of supply). The second ensures that the water is of 
acceptable quality and safe to consume. The third ensures 
there is sufficient pressure delivered to customers (minimum 
of 15m head). The system is operated to try to meet these 
requirements at minimum cost. 

Continuity of supply and pressure requirements are 
generally met through defining minimum threshold levels for 
the reservoirs. These thresholds are to trigger the operation 
of pumps or inlet control valves.  

A key aspect of meeting the water quality requirements is 
ensuring sufficient disinfection. Initial dosing of chlorine and 
ammonia occurs at the WFP, with secondary rechlorination 
at the reservoirs to top-up chlorine levels. Currently 
rechlorination is performed manually by adding chorine 
tablets to the reservoirs at specified intervals, e.g. twice per 
week. There are currently trials to move to an automatic 
dosing system that continuously regulates the reservoir 
chlorine levels. Sydney Water has an internal disinfection 
target of >0.60mg/L total chlorine for >90% of samples 
collected at the customers front tap.  

The amount of chlorine added to the reservoirs is 
constrained by the amount of ammonia present in the water. 
The desired chlorine to ammonia ratio is 4:1. Above this, di- 
and tri- chloramine is formed which has an unpleasant smell 
and taste. Below this ratio, free ammonia is present and may 
be consumed by bacteria to produce nitrites and nitrates. 
This bacterial growth will also place a higher demand on 
chlorine. 
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The concentration of ammonia in a reservoir is generally 
dependent on the initial concentration of the water from the 
WFP, and how much has been consumed. This latter 
component is generally dependent on how much time has 
elapsed since initial dosing. The reservoir turnover targets 
are set to keep the residence time low. The residence time 
measures the average time that the water has remained in 
the reservoir and is dependent on how frequently the 
reservoir is refilled and the volume of water that is added in 
each refill cycle. The desired reservoir turnover is set by the 
system operators in consultation with the water quality team 
based on the ability to balance quantity and water quality. 

Based on the Woronora delivery system, this work 
systematically studies the impact of network operations on 
water quality characterised by indicators such as total 
chlorine residual from the reservoir to customer taps. 
Historical network operation records, including reservoir 
levels, pump status, flows, pressures, dividing valve status, 
water demand, and water quality, are used as input data.  

A prediction model for water quality has been built to provide 
quantitative predictions of total chlorine residual for the 
whole reticulation network downstream of reservoirs, for any 
target date included in historical records in different supply 
zones of the system. The water quality model aims to assist 
Sydney Water to meet the internal disinfection target of 
>0.60mg/L total chlorine for >90% of samples collected at 
the customers front tap. 

 
WATER QUALITY 
MODELLING 
METHODOLOGY 
This section describes the quantitative model that links the 
upstream operational decisions and external influences on 
the water quality of the downstream customer connection 
points. The modelling is separated into reticulation network 
that extends from the reservoirs to the customers, and the 
trunk network that links the WFP to the downstream 
reservoirs. In modelling water quality within the reticulation 
network only the total chlorine residual, as the primary 
disinfectant, is considered.  

In constructing the model, an initial factor analysis was 
performed to identify the key relationships between the 
available data and confirm assumptions regarding the causal 

influences. This follows the construction of a parametric 
Bayesian model. 

 
Factor Analysis 
Here, an initial analysis is performed to identify the important 
system characteristics that may affect the downstream total 
chlorine residual. This is performed in a data-driven and 
non-parametric fashion that does not impose any 
assumptions on the structure of the relationships. The 
objective is to identify the dependencies that may exist in the 
data, without making upfront assumptions on what chemical 
or physical processes are at work. 

An integrated dataset has been assembled by combining 
sample data for the reservoirs and compliance tap sites, 
along with level sensors and water quality analysers at the 
reservoir sites. The dataset allows the relationships between 
the total chlorine at the tap sites and reservoir information 
regarding total chlorine residual, water temperature, pH 
balance, turbidity, ammonia concentration, and reservoir 
levels. 

To detect the critical variables, or factors, that can help 
explain or predict the downstream total chlorine residual, an 
exploratory regression analysis has been performed. This 
uses a non-linear and non-parametric regression model 
based on the Random Forest algorithm (Breiman, 2001).  

A recursive analysis is performed where, starting with all 
factors, each factor is considered in turn and the factor that 
produces the smallest reduction in predictive error is 
removed. This recursive elimination is repeated until all 
features have been removed. This enables the most 
important predictive factors to be identified, with the results 
depicted in Figure . The baseline error represents the 
average error in the mean total chlorine residual and 
characterises inherent variability in the data. This represents 
the removal of all factors.  

The analysis shows that reservoir total chlorine and 
temperature capture over 90% of the variability in the 
downstream total chlorine that is explainable by the data 
(and about 50% of the total variability). Reservoir level, 
chlorine to ammonia ratio, and pH have a much smaller 
effect. Turbidity provides virtually no additional information. 
This analysis confirms the importance of the initial total 
chlorine residual at the reservoir, and the effect that 
temperature has on the decay properties. 

 



 

 
4 

 

Figure 2. Reservoir total chlorine and temperature explain over 90% of the explainable variability in downstream total 
chlorine. 

 
Total Chlorine Decay Modelling 
With the two critical factors of reservoir total chlorine and 
temperature identified, a causal parametric model is now 
explored. Analytical models for free and total chlorine 
dynamics often consider a first order decay model, with 
extensions that include multiple reactants, and separate bulk 
and wall decay processes (Fisher, 2012; Monteiro, 2014; 
Nejjari, 2014). For instance, a simple first order model, with 
decay rate or decay coefficient denoted by 𝑘 is defined by 
the equation 

 !"
!#
= −𝑘𝐶. (1) 

Integrating this produces the exponential decay curve 𝐶 =
𝐶$exp	(−𝑘𝜏) where 𝐶$ is the initial total chlorine residual, and 
𝜏 is the elapsed time. 

Temperature dependence is often included through an 
explicit functional dependency such as a simple linear, 
exponential or Arrhenius’ equation (Monteiro, 2014). For 
example, a linear model for the decay rate, where 𝑇 denotes 
the water temperature, defines the decay rate as 

 𝑘 = 𝑘$ + 𝑘%𝑇. (2) 

The analysis has shown that chlorine decay rates, as 
measured in a controlled laboratory environment, exhibit 
significant variability. This is unlikely due to chlorine 
measurement errors alone and the high degree of variability 
may or may not be driven by temperature changes. The 
observed relationship between initial decay rates and the 
initial water temperature shows a very slight upward trend 
with temperature.  

Furthermore, it is expected that the decay characteristics 
within the network will show even higher variability and a full 
statistical analysis will be needed to determine the influence 
between temperature, measurement errors and other 
potential influences. 

 
Statistical Modelling of Decay Dynamics 
In what follows, the parametric Equations (1) and (2) will be 
used to define the underlying chlorine dynamics, and the in 
situ operational data will be used to characterise the 
parameter variability and uncertainty. This departs from all 
known past work that uses an analytical decay model to 
predict downstream chlorine residuals.  
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These methods typically assume that the free parameters 
that govern the dynamics (e.g. 𝑘$ and 𝑘%) are unknown but 
time invariant constants that are selected based on some 
calibration process, for example, to minimise the squared 
difference between model predicted chlorine concentrations 
and those measured in the network (Nejjari, 2014). This type 
of calibration process not only assumes that the parameters 
are constant, but that the time the water takes to travel 
through the system is also known precisely. This requires, 
for instance, all the network flows and customer demands to 
be known. These assumptions are unlikely to hold in real 
systems.  

It is noted that the first order decay model with simple linear 
temperature dependence represents a relatively simple 
model and more complex extensions could be considered. 
However, as the model becomes more complex, with more 
free parameters, it may become better at reproducing the 
past observations (i.e. the training or calibration data).  

However, at the same time it may become poorer at 
predicting new measurements at other locations in the 
network or time in the future. This is the well-known problem 
of overfitting. Here, the use of a simple model (total chlorine 
decay modelling) developed based on factor analysis 
insights (factor analysis) is expected to avoid the issues with 
overfitting, while introducing some additional bias. Although 
this is not ideal, the additional bias is at least partially 
observable in the training data and can be characterised in a 
data-driven fashion. 

Thus, the critical objective here is to construct a statistical 
model that can quantify the uncertainty and inherent 
variability in the system and allow predictions to be 
generated for new sites with the network. 

 
Travel Time Estimation Methodology 
A critical input to the parametric decay model is knowing the 
time it takes water to travel through the network, for instance 
from a chlorine analyser at a reservoir outlet to a 
downstream customer connection point. It is noted that the 
travel time cannot be measured directly and must be 
estimated indirectly.  

To do so, each zone is considered separately combining the 
available flow data, as illustrated in Figure 3. The total 
incoming and outgoing flows of each zone can be estimated 
by considering the data from the flowmeters and reservoir 
level sensors. These are available at a high frequency of 
one measurement per 15-minute period. In addition to this, 

the meter data of individual customers provide detailed 
spatial data on the outflows on the network, but at a very low 
temporal resolution of once per month (interpolated from 
quarterly meter readings).  

To estimate the time it takes water to travel from, for 
example, the upstream reservoir to a location in the network, 
an assumption must be made on the temporal variation in 
the demand at the customer locations. Here, it is assumed 
that all the customers consume a fixed proportion of the total 
water that is consumed within the zone. 

For example, if during a peak demand time the total 
consumption within the zone is twice the average, it is 
assumed that all customers will be consuming twice their 
average demand. This assumption provides a way to use 
the high frequency flowmeter data to interpolate temporally 
the individual customer demand. It is noted that this does not 
differentiate between residential, commercial, or industrial 
customers that may consume water at different times during 
the day. Such an extension could be considered in the 
future.  

It is acknowledged that this assumption on how water is 
used by customers is an explicit simplification and any 
network flows that are estimated with this assumption will be 
incorrect. Nevertheless, it provides a good starting point for 
estimating the travel time between two points in the network. 
In what follows, an additional error model will be constructed 
to reflect the approximate nature of the hydraulic model. 

 

Figure 3. Travel time estimation for each zone. 



 

 
6 

The travel time estimation can be performed using standard 
hydraulic flow simulators by first computing the flow rates on 
each pipe segment, followed by a path tracing algorithm to 
compute the total travel time. Based on the available data 
from flowmeters and water consumption by customers, we 
have studied 12 reservoir zones in the delivery network as 
shown in Figure 4. The travel time for each reservoir zone is 
estimated and shown in Table 1. 

 

 

 

Figure 4. A map of watermain routes (red lines) between 
12 reservoirs (blue dots). 

 

 

 

 

Reservoir name Travel time from Woronora 
(min) 

Helensburgh 285 

Engadine 443 

Loftus 538 

Heathcote 569 

Heathcote Elevated 591 

Hargrave Heights 704 

Stanwell Park 714 

Lucas Heights 742 

Menai 913 

Sutherland 1057 

Maianbar 1998 

Illawong 2042 

Table 1. Estimated travel time for each reservoir. 
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Decay Model 
To incorporate the known variability in decay rates and the 
travel time estimation errors, a full statistical decay model is 
now defined. Firstly, consider a customer connection point at 
a network location. The estimated travel time between a 
given upstream reservoir and location 𝑠 at time 𝑡 is 
dependent on the network topology and the assumed 
demands for all customers in the network. 

This is computed through a standard deterministic hydraulic 
simulation with the assumptions outlined above and is 
denoted 𝜏̂#,' (the hat denotes an estimated value). For the 
networks under consideration this typically takes values up 
to 48 hours.  

The upstream total chlorine residual is denoted 𝐶#,'(  and 
represents the delayed total chlorine measurements at the 
upstream reservoir site, for instance, provided by the 
chlorine analysers; 

  𝐶#,'( = 𝐶)*'*+,-.+(𝑡 − 𝜏̂#,').  

Where 𝐶)*'*+,-.+(𝑡) represents the time series of 
measurements made by the online chlorine analyser at the 
reservoir. Furthermore, let the measured water temperature 
of the upstream reservoir be denoted by 𝑇#,'( .  

The predictions of interest are the total chlorine residual at 
downstream locations and will be denoted be 𝐶#,'. The 
compliance measurements represent observations of this for 
a limited set of locations and times, (𝑡, 𝑠) ∈ 𝑀/-01.  

The first order temperature dependent decay model, 
specified in Equation (1) and (2), provides a link between the 
operational data that comprise the upstream reservoir total 
chlorine residual, water temperature, and estimated travel 
time between the reservoir and the downstream location. 
This set of data is denoted by 

 𝑑#,' = {	𝜏̂#,', 𝐶#,'( , 𝑇#,'( }. 

Written explicitly, the model equation is 

  𝐶#,' = 𝐶#,'( exp	(−𝜏̂#,'(𝑘$ + 𝑘%𝑇#,'( )). (3) 

This can be written compactly as 𝐶#,' = 𝑓(𝑑#,', 𝜃) where 𝜃 
incorporates the decay parameters 𝑘$, 𝑘%. 

As highlighted previously, the above decay model makes 
approximations in multiple areas including:  

The actual time it takes water to travel through the network 
may be larger or smaller than the estimated value 𝜏̂#,'. 

The measurements of temperature, and total chlorine, are all 
subject to measurement errors. 

The actual decay rate is not only dependent on temperature 
and may change due to other unmodelled effects. 

To properly represent the relationship between the data, 
parameters and the predictions, all these unknown errors 
should be considered. It is noted that this is far from straight-
forward as even the likely magnitude of the errors is 
unknown and it is not often practical to perform a targeted 
test (e.g. a bench top test, tracer test) to estimate them in a 
reliable fashion. 

The proposed probabilistic modelling approach enables all 
these error characteristics to be estimated in situ using only 
the available real-time operational and sparse compliance 
data. To define this model, consider the deterministic model 
that links the real-time operational data to the downstream 
total chlorine residual in (3). This is extended to incorporate 
errors in the travel time and decay rates with an unknown, 
but positive, scale factor 𝜉. The unknown measurements 
errors and other unmodelled effects are represented with an 
additive factor 𝜀. These errors may be different at each time 
and location in the network depending on environmental 
conditions. The extended model equation becomes 

  𝐶#,' = 𝐶#,'( exp;−𝜉#,'𝜏̂#,'(𝑘$ + 𝑘%𝑇#,'( )< + 𝜀#,'. (4) 

The additive errors are expected to be centred on 0 and may 
be positive or negative. It is assumed that for any 𝑠 and 𝑡, 
the errors are independently and identically distributed 
according a Gaussian distribution with median of 0 and 
unknown variance, denoted by 𝜎23. The scale errors are 
expected to be centred on 1, and must be strictly positive. It 
is assumed that these errors are independently and 
identically distributed according to a log-Gaussian 
distribution with median of 1 and unknown variance, denoted 
by 𝜎4

3. This distribution is chosen such that the probability 
that 𝜉 lies in the interval [1, 𝑎] is the same as the probability 
it lies in the interval [!", 1] for any 𝑎 ≥ 1.  

The unknown terms in Equation (4) are separated into decay 
parameters 𝜃 = {𝑘$, 𝑘%}, error terms 𝑒 = {𝜉#,', 𝜀#,'}, and error 
strength parameters 𝜙 = {𝜎2 , 𝜎4} that define the probability 
distribution for the error terms 𝑒. 
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Model Training 
To enable new predictions to be made for downstream sites 
at new locations, it is required to infer the decay parameter 
𝑘. This is performed using the measured total chlorine 
residuals obtained from the compliance sites. This inference 
is solved using the least squares regression by curve fitting.  

To enable new predictions to be made for downstream sites, 
either at new locations and/or times, it is required to infer the 
decay parameters 𝜃 = {𝑘$, 𝑘%} and error strength parameters 
𝜙 = {𝜎2 , 𝜎4}. This is performed using the measured total 
chlorine residuals obtained from the compliance sites.  

A full Bayesian inference procedure is performed to 
generate a probability distribution over the parameters 𝜃, 𝜙 
given the available operational and compliance data, and 
loosely constraining priors for 𝜃 and 𝜙. The priors are 
defined via a set of hyperparameters that are selected based 
on expert knowledge of expected decay rates and other 
information. Example decay curves, based only on these 
loosely constraining priors, are depicted in Figure 5. 

 

 

  

 

 

Figure 5. Prior chlorine decay curves for 12oC (left) and 25oC (right). The initial upstream total chlorine residual is 
specified as 1.8mg/L. All other uncertain parameters have been marginalised out to highlight the uncertainty in the 
predicted downstream total chlorine residual. 

 

A separate model is constructed for each reservoir zone, 
based on the available downstream compliance 
measurements 𝐶#,', and the corresponding travel time, 
upstream chlorine and temperature information, denoted by 
𝑑#,'. The training dataset for a given reservoir is denoted by 
𝐷 = {𝐶#,', 𝑑#,': (𝑡, 𝑠) ∈ 𝑀/-01}, where 𝑀/-01 denotes the set 
of times and tap locations within the network where the past 
compliance measurements have been made.  

 

 

The posterior distribution of the parameters 𝜃, 𝜙 is 
proportional to the prior and the likelihood 

𝑝(𝜃, 𝜙|𝐷) ∝ 𝑝(𝜃, 𝜙)𝑝(𝐷|𝜃, 𝜙) 

This inference problem is solved using the hybrid Monte 
Carlo sampling scheme. The median parameter estimates 
for the four variables are plotted in Figure 6 for each zone. 
The complex set of pairwise plots that show the uncertainty 
in the parameter estimates, as well as the correlations 
between parameters, is displayed in Figure 7. 
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Figure 6. The median estimates of the posterior parameter distributions for each reservoir supply zone. 
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Figure 7. Scatter plots of the posterior samples showing the correlations between parameters. 
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To show the ability of the model to capture the variability in the data, Figure 8 plots the upstream reservoir and downstream tap 
chlorine residuals for all the training data. The dependence of the decay rate on time is visualised in the uncertainty in Figure 9.  

 

 

Figure 8. Example of the model being used to predict the compliance data. The upstream reservoir data is in blue, with 
the downstream tap compliance measurements in orange. The model predictions are in black, with the central box 
representing the middle 5% confidence interval, and the upper and lower bars representing the 99% confidence interval. 
The median prediction is given by the small orange dash in the middle of the boxes. 

 

 

Figure 9. (a) The uncertainty in the estimated decay rate, and its dependence on temperature. (b) The uncertainty in the 
predicted downstream total chlorine for different travel times. This is based on a nominal upstream value of 1.8mg/L and 
a temperature of 25oC. 
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RESULTS AND 
DISCUSSION 
 
Overall Results 
The water quality model has been trained using the recent 
data collected from Sydney Water and Veolia. Two typical 
dates in summer and winter are chosen to represent the 
water quality over the whole delivery system in different 
seasons. Figure 10 and Figure 11 show the water quality 
prediction results in summer and winter respectively. 

 

Figure 10. Water quality predictions in summer. 

 

Figure 11. Water quality predictions in winter. 

 
Model Validation 
To assess the predictive performance of the model, a set of 
mobile chlorine analysers were deployed at selected tap 
sites within the reservoir zones. The training, prediction and 
performance assessment process are depicted below in 
Figure 12. 

 

 

 

 

 

Figure 12. The separate steps of training, prediction and performance assessment using the acquired data. 
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For each zone, the performance is measured by absolute 
mean difference which compares the mean values of 
prediction results with corresponding mean measurements 
of mobile analysers within the zone. Furthermore, the 
performance of the model trained with mobile chlorine 
analysers is compared with the model trained without mobile 

analysers. In total, 49 mobile chlorine analyser locations 
have been used for model validation. The overall 
performance is presented using the median value of the 
performance of all zones. As shown in Figure 13, the water 
quality model performs better with mobile chlorine analyser 
data, which reduces the median error from 0.336 to 0.158. 

 

 

Figure 13. Overall performance of the water quality prediction model with and without mobile analysers. 
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Furthermore, individual comparisons between the predicted 
and measured data for each zone are also performed. For 
example, Figure 14 and Figure 15 show the validation 
results in Engadine and Heathcote. The errors for the 
customer connections of the same zone are different since 

their distances to reservoir are different. Furthermore, we 
focus on the predictions with the distribution of water quality, 
which are shown in Figure 14(b) and Figure 15(b). Although 
the median value is not always observed, the probability is 
accurate for each interval of distribution. 

 

 

(a) The performance comparison in Engadine 

 

 

(b) The predicted distribution in Engadine 

 

Figure 14. Validation in Engadine. 
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(a) The performance comparison in Heathcote 

 

 

(b) The predicted distribution in Heathcote 

 

Figure 15. Validation in Heathcote. 
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Prediction with Varied Chlorine Levels at 
Water Filtration Plant 
To investigate how water quality would change when 
different chlorine levels (1.9mg/L, 1.7mg/L, and 1.5mg/L) are 
produced at the WFP, further analysis has been conducted. 
In water quality prediction for each zone, the observed total 
chlorine is used to build the water quality model. However, 
the measurements of total chlorine at the reservoirs are not 
available when simulating the changed chlorine levels at 
WFP. Thus, water quality at the reservoirs is first predicted, 

and then the water quality prediction is conducted for the 
pipes in the network.  

Table 2 lists the predicted water quality at different 
reservoirs when different chlorine levels are supplied from 
the WFP. It should be noted that lower total chlorine 
residuals will result in quicker nitrification generally which in 
turn will cause a nonlinear drop in total chlorine. Without 
modelling such nitrification impacts on total chlorine, the 
prediction model was trained when the chlorine level at the 
WFP is around 2.1mg/L. Thus, the actual total chlorine 
residuals would be lower than the predicted results at lower 
WFP set points. 

 

Reservoir 1.9mg/L at WFP 1.7mg/L at WFP 1.5mg/L at WFP 

Woronora 1.900 1.700 1.500 

Helensburgh 1.821 1.629 1.438 

Engadine 1.779 1.591 1.404 

Loftus 1.754 1.569 1.384 

Heathcote 1.746 1.562 1.378 

Heathcote Elevated 1.740 1.557 1.374 

Hargrave Heights 1.711 1.531 1.351 

Stanwell Park 1.708 1.528 1.349 

Lucas Heights 1.701 1.522 1.343 

Menai 1.658 1.484 1.309 

Sutherland 1.623 1.452 1.281 

Table 2. Predicted total chlorine at reservoirs with different chlorine levels at WFP. 
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Based on the predicted water quality at the reservoirs, the 
prediction at pipe level can be conducted using the 
developed water quality model. Figure 16 shows the areas 
with lower water quality levels when WFP provides chlorine 

level of 1.9mg/L, 1.7mg/L, and 1.5mg/L. It can be seen that 
with the lower chlorine level at WFP, more areas are 
experiencing lower water quality performance. 

 

 

 

 

Figure 16. Water quality prediction with different chlorine levels at WFP. 
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CONCLUSION 
A secure and safe supply of drinking water is fundamental to 
public health. Ensuring the continuous supply of high-quality 
drinking water is a critical requirement for water supply 
networks management. Maintaining water quality through 
the water delivery system to the point of consumption is one 
of the most challenging tasks faced by the water utilities, 
taking into consideration the components of the delivery 
system (e.g. pipe materials, tanks, valve) and other 
operational information (e.g. flow, demand). 

This paper has proposed a data-driven solution to predict 
water quality for the Woronora delivery system. Given the 
available data, an initial factor analysis has been conducted 
to investigate the driving factors for water quality modelling. 
Based on the identified key factors, a Bayesian parametric 
decay model has been developed for predicting water quality 
at any location at any time within the delivery system. By 
capturing the variability in decay rates and travel time 
estimation errors, the proposed full statistical decay model 
could produce distribution-based prediction results which 
provide more information for decision making. 
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