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ABSTRACT 
Inspection and condition assessments of network 
infrastructure are critical for water utilities and city councils 
to ensure the structural integrity and functionality of sewer 
pipes and stormwater drains. These assessments are 
necessary to identify the pipes requiring rehabilitation 
before they deteriorate past the point of renewal. In 
practice, these assessments are performed manually 
through camera inspection of the pipes. However, the 
visual observation of the resulting footage can be biased 
by the operator subjectivity.  

VAPAR.Solutions is a cloud platform that automates 
condition assessment directly from a pipe’s CCTV footage. 
In this context, VAPAR, an Australian-based company, 
developed a deep-learning algorithm to code inspection 
videos automatically and consistently. This study aimed to 
evaluate the performance of this auto-coding algorithm by 
using a dataset of 203 inspection videos captured in 
stormwater and sewer pipes in Victoria, Australia.  

This study revealed that the VAPAR algorithm missed less 
defects in sewer and stormwater pipes (13.2%) than the 
operator during visual inspection (36.6%). The VAPAR 
algorithm was however ‘over-sensitive’ and generated 
28.1% of false alarms, against 7.8% for the operator.  

This study also revealed that the VAPAR algorithm was 
significantly more accurate than the operator at grading the 
pipes, with an accuracy between 76.3%-79.8% against 
48.5%-52.2% for the operator.  

Because maintenance and rehabilitation programs are 
typically based on these service and structural grades, the 
use of the VAPAR algorithm could help better identify 
assets that require cleaning or rehabilitation.  

Keywords: Artificial intelligence, sewer, stormwater, 
inspection, asset management. 

 

INTRODUCTION 
Inspection and condition assessments of network 
infrastructure are critical for water utilities and city councils 
to ensure structural integrity and functionality of sewer 
pipes and stormwater drains. These assessments are 
necessary to identify the pipes requiring rehabilitation 
before they deteriorate past the point of renewal.  

The Australasian Corrosion Association estimated in 2014 
that corrosion caused mains failure costing approximately 
$900 million AUD/yr. For this reason, water utilities and city 
councils across Australia spend millions of dollars every 
year to maintain their sewer and stormwater assets. 

The traditional CCTV condition assessment methodology 
of network assets presents challenges for utilities and 
operators, such as: 
• The time required to visually review CCTV inspection 

videos and identify defects;  
• The operator subjectivity (Dirksen et al., 2013); and 
• The field conditions which can make the visual inspection 

practically difficult.  

To address these issues, the recent deployment of artificial 
intelligence tools has allowed the development of 
algorithms to automatically identify defects from inspection 
footage. VAPAR developed an algorithm to automatically 
code inspection videos using deep learning.  

While visual recognition algorithms have been used widely 
in various industries, this specific application is relatively 
recent and needs to be rigorously tested. One of the 
specific challenges faced during the validation of such 
algorithms is the subjectivity of the labelled data.  

For example, Dirksen et al. (2013) showed that the 
probability of false positive is in the order of 25%. In other 
words, approximately 25% of defects are typically missed 
by operators. In this context, the operator assessment 
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cannot be used as a reference to assess the performance 
of auto-coding solutions.  

This study developed a rigorous process to assess the 
accuracy of such auto-coding algorithms relying on the 
detailed review from an experienced operator to construct 
a reference list of defects. The objective of this study was 
to apply a similar strategy to evaluate the performance of 
the VAPAR algorithm. 

 

 

METHODOLOGY 
Pipe selection 
The CCTV videos used for this trial were selected from 
various inspection campaigns performed by Veolia 
Network Services in Victoria, covering a wide range of 
diameters and materials (see Figure 1 for details). A total 
of 203 pipes were included in this study, representing a 
total length of 3,594 m. 

 

 

      
 

Figure 1: Repartition of diameters and materials in the 203 pipes used for the comparison of VAPAR results against 
operator observations (normalised by length; Total length of 3,594 m; CP: Concrete pipe; VC: Vitrified clay; RC: 
Reinforced concrete; PVC: Polyvinyl chloride; FC: Fibre Cement; Diameters in mm). 

 

VAPAR algorithm 
The VAPAR algorithm is based on a deep-learning 
approach. The algorithm was calibrated on an extensive 
dataset to allow the recognition of a large range of defects. 
The algorithm provides a score for each identified defect 
ranging from 1 (minor) to 165 (major) according to the 
WSA 05-2013 Conduit Inspection Reporting Code of 
Australia (WSA 05) (Water Services Association of 
Australia, 2013).  

For each video, the algorithm analyses key frames and 
locates the recognised defects (if any) at the chainage 
displayed on the video.  

 

Defect classification 
In order to facilitate the comparison between VAPAR 
results and operator observations, the 77 different WSA 05 
defect types that were reported by the VAPAR algorithm 
were summarised and classified in six different categories:  
• Cracks;  
• Roots;  
• Obstructions;  
• Joint defects;  
• Connection defects; and 
• Other.  

In the following, the accuracy scores are provided within 
these six categories. 
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Comparison process 
The following process was used to compare VAPAR 
results against the operator observations:  

1. The operator observations were retrieved from the 
Wincan mdb files. 

2. The results from the VAPAR analysis were extracted 
from VAPAR’s web portal.  

3. The two results were compared, and a listing of all 
differences was extracted, including cases where:  

a) The type of defects differed between the VAPAR 
analysis and the operator observations (e.g. ‘roots’ 
vs. ‘cracks’) 

b) VAPAR identified a defect where the operator did not 
report any defect, or the contrary. 

4. Video frames were extracted for each listed difference 
and an independent operator reviewed them manually 
through a web application developed specifically for this 
purpose. 

This process allowed the construction of a ‘reference’ used 
for the comparison of results. The VAPAR results and 
operator observations were both compared against the 
reference. 

 

Metrics 
Sometimes the chainages reported by the operator and 
VAPAR for the same defect differed by up to 0.5 m due to 
the identification process. Because of this 0.5 m difference, 
the comparison was made on a ‘section-by-section’ basis.  

In practice, each inspected pipe was segmented in 1m-
long sections. If both VAPAR and the reference had a 
defect of the same nature in the same section, then these 
defects were assumed to be the same ones and the 
VAPAR assessment for this section was considered as 
correct (see Figure 2 for an illustration). 

 

 

 

 

 
 

Figure 2: Top: location of defects as identified through the VAPAR analysis; Bottom: List of defects in the reference. In 
this example, the pipe contains eight 1m-long sections. 

 

This process was repeated for each inspected pipe and the 
following indicators were calculated to estimate the 
performance of the VAPAR analysis and the operator 
observations against the reference. Two indicators were 
used in practice: 
• Precision: A precision of 80% means that 80% of the 1m-

long sections identified by VAPAR as having a defect 
indeed had at least one defect. Conversely, this means 
that 20% of the sections identified by VAPAR as defective 
were in good condition.  

• Recall: A recall of 70% means that the VAPAR algorithm 
was able to identify 70% of the defective 1m-long sections 
but missed 30% of them.  

An ideal algorithm would, therefore, have 100% precision 
and 100% recall. 

In this analysis, these indicators were calculated to assess 
the performance of both VAPAR analysis and the operator 
observations against the reference. These indicators were 
calculated for each of the six categories of defects listed in 
the above subsection.  
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Service & structural grades 
For each video, both the service grade and the structural 
grades were estimated through three different techniques:  
• Operators visually estimated these grades during the 

initial inspection. 
• VAPAR calculated these grades from the defects that 

were identified and by using the WSA 05 standard 
guidelines. 

• The grades were also calculated from the list of defects of 
the reference by also using the WSA 05 standard 
guidelines.  

The operator and VAPAR grades were compared against 
the reference grades. 

 

 

 

 

 

 

Results & Discussion 
Overall VAPAR performance 
Figure 3 shows the precision and recall of the VAPAR 
analysis for the six categories of defects when compared 
against the reference. 

The last two bars of Figure 3 (‘All’) show the performance 
of the VAPAR analysis irrespective of the type of identified 
defect. The recall of 86.8% of defects for this ‘All’ category 
shows that VAPAR correctly identified as defective 86.8% 
of the 1m-long sections that had a defect.  

The overall precision of the VAPAR analysis was 71.8% 
when combining all categories of defect. In other words, 
28.2% of the 1m-long sections identified by VAPAR as 
defective had no defect. This shows that the VAPAR 
analysis is slightly over-sensitive to defects.  

The detailed analysis below reviews the performance of 
the VAPAR analysis for each category of defect. 

 

 

 

 
Figure 3: Recall and precision obtained for the six categories of defects; the number in the grey circle represents the 
number of defects in the reference for each category.
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VAPAR performance - Roots 
The relatively high recall (84.8%) and precision (74.2%) for roots show that this type of defect can be easily identified by the 
VAPAR algorithm. Figure 4 shows that 14.5% of the defects identified by VAPAR were not actual defects, and that most of 
these defects had a score of 1, i.e. defects that were identified as micro-defects.

 
Figure 4: Repartition of the defects identified as VAPAR by ‘roots’. 71.6% of these defects were actually roots; 14.5% 
were not defects, etc. The colour represents the fraction of micro defects (red; score of 1) and bigger defects (green, 
score above 2). 

 

VAPAR performance - Connection defects 
While the VAPAR precision is satisfying for connection defects (81.1%), the recall was relatively low (57.7%). In particular, 
Figure 5 shows that VAPAR missed 28.8% of the connection defects and that VAPAR misdiagnosed 13.5% of actual 
connection defects for defects of other categories. These results were based on a total number of 55 actual connection defects, 
which may limit the validity of this conclusion.

 

Figure 5: Repartition of the actual category of defects for the 1m-long pipe sections identified by VAPAR algorithm as 
having a ‘connection defect’.
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VAPAR performance - Obstructions 
Like the connection defects, the precision of the VAPAR analysis was relatively high (93.5%) but the recall was relatively low 
(59.8%). Figure 6 shows that the VAPAR algorithm missed 22.0% of the obstruction defects and that 18.2% of the actual 
connection defects were misclassified for defects from another category.

 
Figure 6: Repartition of the actual category of defects for the 1m-long pipe sections identified by VAPAR algorithm as 
having an obstruction. 

 
VAPAR performance - Joint defects 
While the recall of the VAPAR analysis is satisfying for joint defects (78.6%), the precision is relatively low (45.2%). This low 
precision means that 54.8% of the joint defects identified by VAPAR were actually not defects.  

Figure 7 shows that 39.1% of joint defects identified by VAPAR were rejected by the independent reviewer. However, Figure 6 
also shows that the large majority of these rejected defects were identified by VAPAR as ‘micro-defects’ (score of 2), i.e. 
minimal joint displacements that operators would typically not report.

 
Figure 7: Repartition of the defects identified by VAPAR as ‘joint defects’.45.2% of these defects were indeed joint 
defects; 39.1% were not defects, etc. The colour represents the fraction of micro defects (blue; score of 2) and bigger 
defects (green, score higher than 2). 
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Figure 8: Example of a minor joint displacement 
identified by VAPAR algorithm (score = 2) but typically 
not reported by operators. 

 
 
 

VAPAR performance - Cracks 
The VAPAR algorithm only missed 7.8% of the cracks 
(recall of 92.2%) and had a relatively high precision 
(71.3%). This high performance originates from the fact 
that cracks are one of the most common defects in sewer 
and stormwater pipes; large datasets were therefore 
available to calibrate the VAPAR algorithm for this type of 
defect.  

Since the performance of deep-learning algorithms 
increase with the size of the datasets used for calibration, 
this could explain the relatively high scores.  

 

VAPAR performance - Other 
All defects that did not enter one of the six categories listed 
above were ranked in the ‘other’ category. Both the recall 
(72.9%) and precision (50.5%) were below average. This is 
because the ‘other’ category includes a large range of 
uncommon defects for which the VAPAR algorithm could 
not be fully trained given the limited datasets.  

Figure 9 shows that the VAPAR algorithm generated ‘false 
alarms’ in less than 11% of cases as only 10.9% of the 
defects identified by VAPAR in this category were not 
actual defects.

 

 
 

Figure 9: Repartition of the actual category of defects for the 1m-long pipe sections identified by VAPAR algorithm as 
having a defect in the ‘other’ category. 
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Impact of the pipe category 
The dataset used for this analysis was composed of 1,913 m of stormwater drains and 1,681 m of sewer pipes. 

Figure 10 shows that the VAPAR algorithm overall performed better in stormwater drains than in sewer pipes. This is because 
visibility is in general better in stormwater, which makes the identification of defects easier. 

 

    
Figure 10: Recall and Precision for each category for different type of pipes. 

Impact of the pipe diameter 
Figure 11 shows that the VAPAR algorithm performance slightly increases with the pipe diameter, which is explained by better 
visibility in bigger pipes. 

 

   
Figure 11: Recall and Precision for each category for different pipes diameters. 
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Impact of the pipe material 
Figure 12 shows that the VAPAR algorithm performed better on concrete pipes (CP) and reinforced concrete pipes (RC) than 
on vitrified clay pipes (VC). This is most likely related to the fact that stormwater pipes are usually made of concrete or 
reinforced concrete, so the visibility in these pipes is slightly better.

   
Figure 12: Recall and Precision for each category for different pipes materials. 

 

Operator performance 
Figure 13 shows that the recall of the VAPAR algorithm is 
higher than the recall of the operator for all categories of 
defects apart from connection defects and obstructions. 
When considering all the defects identified in the 
‘reference’, the overall recall of the VAPAR algorithm was 
higher than the operator recall: while the VAPAR algorithm 
missed 13.2% of defective 1m-long sections (recall of 
86.8% for the ‘all’ category), the operator missed 36.6% of 
these sections.  

The relatively low recall of operators is in the same order 
of magnitude as the recall of approximately 75% reported 

by Dirksen et al. (2013). The precisions for obstructions 
and connection defects were similar for the operator and 
VAPAR algorithm, but the operator had a higher precision 
for all other categories of defects. The overall precision of 
the operator was 92.2%, which is also in line with the 
observations of Dirksen et al. (2013).  

VAPAR precision was overall estimated at 71.9%, which 
means that 28.1% of the 1 m sections identified as 
defective by VAPAR had no defects. This is because the 
VAPAR analysis identified micro-defects that would 
typically be not reported by operators. This is particularly 
true for the minor joint displacements as shown in Figure 
13. 

 

   
Figure 13: Recall and Precision for each category for VAPAR and the operator. 
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Structural grades 
Figure 14 shows that the VAPAR analysis is significantly 
more accurate than the operator when assessing the 
structural grades of pipes. VAPAR correctly estimated the 
structural grade of pipes for 79.8% of inspected pipes and 
was within a grade of +/-1 around the actual grade for 
93.4% of the pipes.  

In comparison, the operator properly assessed the 
structural grade in 48.5% of pipes and was within a grade 
of +/-1 around the actual grade for 76.3% of pipes. In 
particular, the operators tend to overestimate an important 
percentage of the structural grades, which may lead to 
non-necessary pipe rehabilitation if this assessment is 
used to direct the pipe rehabilitation program.  

On the contrary, Figure 14 shows that operators gave 13 
pipes a structural grade of 1 while their actual grades were 
3 or 4. This underestimation of the structural grades could 
lead to ignoring pipes that might be in critical condition, 
leading to operational issues in the near future.  

 
Figure 14: Confusion matrices for structural grades of 
198 pipes (Left: VAPAR; Right: operator). Numbers in 
each square represent the number of pipes that fall 
into the category represented by axes. The colour 
represents the proportion of correctly classified pipes 
for an actual grade. 

Service grades 
Figure 15 shows that the VAPAR algorithm was also 
relatively more accurate than operators to estimate the 
service grade, with a total of 151 videos with a correct 
service grade of 76.3%, and 88.9% of grades within +/-1 
around the actual service grade (against 52.2% and 76.3% 
for the operator, respectively). 

 
Figure 15: Confusion matrices for service grades of 
198 pipes (Left: VAPAR; Right: operator). Numbers in 
each square represent the number of pipes that fall 
into the category represented by axes. The colour 
represents the proportion of correctly classified pipes 
for an actual grade. 

 

Overall, the higher performance of the VAPAR algorithm to 
evaluate the structural and service grades of pipes is 
explained by the fact that the VAPAR algorithm misses a 
minimal number of defects (recall of 86.8%) compared to 
operators (recall of 63.4%).  

The relatively lower precision of VAPAR compared to 
operator precision is mostly related to micro-defects (low 
scores), which also do not significantly impact the grades 
from VAPAR. This explains the relatively good 
performance of VAPAR compared to operators when 
evaluating the structural and service grades of pipes. 
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CONCLUSIONS 
From this study, the operator had higher recall for 
connection and obstruction defects, with similar precision. 
However, for roots, cracks and joint displacement, VAPAR 
had greater recall but lower precision. 

Overall, the VAPAR algorithm missed less defects in sewer 
and stormwater pipes (13.2%) than operators during visual 
inspection (36.6%). However, the VAPAR algorithm was 
overall found to be slightly oversensitive and generated 
false alarms 28.1% of the time, as opposed to just 7.8% for 
the operator.  

This study also revealed that the VAPAR algorithm was 
significantly more accurate than the operator at condition 
grading the pipes, with an accuracy within 76.3%-79.8% 
against 48.5%-52.2% for the operator.  

Because maintenance and rehabilitation programs are 
typically based on these service and structural grades, the 
use of the VAPAR algorithm could help to better identify 
assets that require cleaning or rehabilitation.  
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