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ABSTRACT 
TRILITY has developed a production cloud data 
management solution, KOIOS DatalytiX to provide hybrid 
machine learning applications and deterministic modelling 
tools to its operations, asset management, and engineering 
teams. Two optimiser applications for chemical coagulant 
prediction and filtration performance were deployed in the 
Riverland, South Australia at 10 conventional water 
treatment plants in 2018, to full production in 2019. One year 
later the impacts on the optimisation behaviour of operations 
teams, process performance and trihalomethane (THM) 
reduction outcomes are discussed. 

 

INTRODUCTION 
The water industry has seen rapid change in recent years to 
innovate and manage a vast amount of operational data, 
while improving services and drinking water quality to 
millions of customers. Many technology projects quickly 
realise stored data is of no intrinsic value unless it is used 
strategically to improve performance, within a useful time 
horizon. For this reason, heavy focus has been put on 
projects aimed at implementing effective automation, data 
management, and fit for purpose optimisation tools, with the 
aim of driving the total costs of operations down and 
improving services to customers. 

Performance evaluation and optimisation can be difficult and 
costly to manage when poor efficiency, lack of 

standardisation or aging systems become a barrier to 
additional improvements. Regional and remote drinking 
water systems can benefit from modern rapid developments 
in data management, modelling and augmented decision 
tools to supersede aging technology infrastructure.  

TRILITY has undertaken a multi-year first principles 
approach to re-align operations data management, 
operations technology architecture and processes. The aim 
is to link decision makers directly to real time performance 
analytics, event and notification processes, and predictive 
tools for optimising treatment performance (Figure 1a). Two 
of these tools are discussed with a focus on situational and 
process awareness, long term disinfection by-product 
formation outcomes for trihalomethane generation, and 
decision support tool design for operational teams. 

• Predictive dosing for improved coagulation 
• Automated best practice filter performance monitoring 

Correctly implemented, such systems can remove or reduce 
the need for expensive and potentially high-risk travel, and 
improve process and water quality governance at either 
local, process or system-wide levels. It is also an opportunity 
to link operators to expert teams seamlessly, utilising the 
same digital tools, independent of their location. 
Understanding how individual teams, managers and support 
staff all interact with applications differently (“user stories”), 
and capturing this interaction was highly effective to build 
and increment useful features within the applications 
released to the teams. 
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WHY CHANGE? 
To build this confidence in these applications, operators 
must be provided sound reasons why change is required in 
the overall context of raw water quality, desired process 
performance and operating constraints. If a recommendation 
changes, there must be an obvious contextual relationship 
presented concurrently. To achieve this, the platform 
applications provide modern graphical interfaces, with real 
time SCADA, laboratory and calculated KPIs in a common 
environment for simultaneous viewing.  

The initial two-year research and development program from 
2016-2018 developed required data infrastructure and 
components to scale the service into production. The 
chemical dosing optimiser was then deployed in early 2019, 

and the filter optimiser in early 2020. The applications 
development team was formed to provide optimisation 
solutions as a service to the business, with training, 
platform, and web portal management support. Providing 
user feedback sessions and performance benchmarking 
were critical for trust building and successful long-term 
implementation after each production deployment. 

To enable process predictions to benefit performance, 
operators must be able to see clear reasons to change. 
Many chemical dose predictors and asset performance 
engines are commercially available. However, to ensure 
uptake, optimisation applications must be backed up by 
strong evidence for those controlling processes to make an 
informed change with confidence.  

 

 

 

 

Figure 1a. KOIOS DatalytiX Platform architecture for process optimisation applications. 
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GENERALISED 
APPLICATION GOALS 
Applications for the platform were built by understanding key 
operational pain points in water and wastewater treatment, 
interviewing operational teams and completing several 
proof-of-concept studies. This was to ensure each module 
provided clear benefits to performance, automation or 
workflows enhancements on delivery. 

For the development of each model or application, the 
business requirements, data quality and operational context 
to the problem under investigation needed to be well 
understood. Specific aspects of each data set, and the 
methodology required for different modelling approaches 
and tools were only investigated once a detailed business 
understanding was defined (Figure 1b). 

 

To ensure value in each application was delivered, the 
following generalised application goals were established to 
guide the development teams during each phase. 

• Goal 1: Consolidate – To unify data management and 
automation benefits with a scalable and operator-focused 
solution across operations, asset management and water 
quality teams. This ensures multidisciplinary intelligence & 
experience is captured as user stories in the application 
design process.   

• Goal 2: Simplify – Improve and streamline optimisation 
tasks and processes while codifying long-term operational 
knowledge into applications. Make the task easier than 
the process being superseded. Complexity should be 
removed where practical with core focus on specific 
operating context for each user story. 

• Goal 3: Benchmark – Ensure benchmarking and 
assessment of long-term process performance uses a 
data driven approach to minimise risk, while being 
transparent and traceable. 

• Goal 4: Improve – Ensure we can quantitatively 
demonstrate improved customer, compliance or OPEX 
outcomes for each application deployed into operations. 

 

 

 

 

Figure 1b. Business understanding process for application development. 
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APPLICATION 
DEPLOYMENT IN THE 
RIVERLAND CONTRACT, 
SOUTH AUSTRALIA 
In this case study, production deployment of two of the 
platform applications, ChemDose+, Filter+ and subsequent 
performance and capability outcomes are discussed. The 
Riverland contract was selected for this analysis as it is 
unique in that the catchment source, raw water quality and 
treatment design similarities allow broad benchmarking 
comparisons across multiple sites.  

The Riverland contract, operated on behalf of the local water 
utility, is in regional South Australia and consists of 10 water 
treatment plants located from Renmark on the Murray River 
near the Victorian border to Summit storage in the outer 
metropolitan area of the Adelaide Hills (Figure 2). The WTPs 
vary in production capacity from 4 megalitres per day (ML/d) 
at Waikerie to 90ML/d at Swan Reach. During the project 
the following activities and application deployments were 
undertaken. 

These application goals were developed into a series of 
requirements and managed from design through to 
implementation and training by a team of subject matter 
experts from water quality, process, data engineering, data 
science and asset management teams.  

 

 

 

 

Figure 2. A snapshot from the operational system showing the location of the 10 Riverland conventional WTPs in regional South 
Australia.
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In addition to the above stated goals, the COVID-19 
pandemic has clearly demonstrated the need for additional 
flexibility in regional operations - when less experienced 
operational teams are potentially isolated for long periods by 
necessity from managers, senior operators or team leaders. 
In this context, it is critical that data management solutions 
and optimisation applications be scalable, easily supported, 
and robust during potentially extended periods of adverse 
operations.  

• Migration, data modelling and loading of over 
7,000,000,000 historical data points into a common data 
store, connected securely to SCADA, ERP and third-party 
databases. 

• Automated high and low volume data ingestion workflows 
to enable machine learning, deterministic and hybrid 
modelling output capability as well as custom data views 
by user story. 

• Chemical coagulant dose prediction and historical 
hindsight engine for water quality performance 
assessment and model output validation. 

• Applications for rapid filter asset performance assessment 
including coagulation performance validation tools. 

• An in-house unified, modern and flexible web-based user 
experience (UX) and user interface (UI) with no external 
vendor support required for dashboard design and 
visualisation. 

The data brought into the KOIOS DatalytiX platform, and the 
frequency of the datapoints received from these sources, 
ranges from quasi-static, such as site information, to daily, 
hourly, minutely and even sub-second for on-line SCADA 
sensors depending on the site and process.  

In order to allow for analyses at multiple timescales, data is 
sent and stored in a raw, immutable format and then 
processed as needed for dependent calculations, virtual 
sensors, and aggregations required by operators. 
Irregularities or missing data can be quickly computed on-
line and brought to the relevant stakeholders’ attention. 

 

 
 
 
 
 
 

METHODOLOGY 
To assess long-term optimisation outcomes, four discrete 
historical periods of operation were comparatively assessed 
over a 17-year period from the beginning of available water 
quality data at each WTP. The final discrete historical period 
is divided into two subsets before and after optimisation 
applications, to understand the benefits of the ChemDose+ 
and Filter+ applications. Each discrete period has been 
selected to allow like-versus-like comparisons of operation 
between comparable periods. In our results and discussion, 
we compare the millennium drought to recent drought 
conditions impacting NSW, Victoria and South Australia, 
while comparing the blackwater events described with each 
other, and finally performance as a whole. 

Period A: Millennium drought: 6/01/2004 – 
31/01/2010  
This period of operation took place during the millennium 
drought in South Australia, commencing with low rainfall in 
1996 and recognised by 2003 as the worst drought on 
record. Water quality in the Murray Darling Basin (MDB) for 
this period was characterised by low turbidity and low 
dissolved organic carbon loading with low raw water 
variability. This period ended abruptly in late 2009 with large 
inflows to the catchment with the La Nina weather events 
resulting in widespread rain and flooding in Queensland and 
South Eastern Australia. (Braun et al 2013) 

Period B: Blackwater 1: 31/01/2010 – 
2/07/2016  
The first blackwater event from drought breaking rains in late 
2009 resulted in raw water quality degradation, and extreme 
treatment challenges with dissolved organic carbon (DOC) 
peaking at >18mg/L and associated peak turbidity events 
>400 NTU. 

Period C: Blackwater 2: 2/07/2016 – 5/04/2018 
The second extreme weather event resulting in 
unprecedented treatment challenges occurred in 2016 with 
large inflows to the MDB, with peak DOC >25mg/L and peak 
turbidity of >180NTU (Figure 3). 

Period D: South-eastern (SE) drought: 
5/04/2018 – Present 
This period marked a return to stable raw water quality in the 
catchment seen during the millennium drought. This period 
is discussed in relation to the millennium drought to compare 
similar periods of catchment quality.  
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Building trust  
Perhaps the most important focus of deploying production 
optimisation systems and applications to operators is 
confidence that the model output is providing a valid output 
and an optimised selection based on plant history, current 
raw water quality, and hydraulic conditions.  

To build trust in the solution and lay the groundwork for 
future modules in the original 2019 deployment, operators 
were shown how the model outputs varied over long time 
scales, with water quality and other performance indicators, 

including extreme events and high production demand 
periods. Once this had been demonstrated, further training 
focused on how the applications could be used for 
operational decision making.  

This way it could be demonstrated that operational 
knowledge generated by their historical decision making 
formed a cornerstone of the current predicted or 
recommended values, further enhancing trust in the 
platform. 

 

 

 

 

Figure 3. An extract of the operational platform showing long-term historical dissolved organic carbon concentrations as a pre-
cursor to THM production. The different coloured dots represent the different sites along the Riverland series of plants. 
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COAGULANT DOSE 
PREDICTION 
Historically coagulant dose optimisers have been utilised to 
predict dosage rates online with accuracy (Mussared et al 
2014), however, the integrated platform, computational 
power and data management tools required to streamline 
and scale these tools are only just becoming widespread in 
water operations. The ChemDose+ application is utilised for 
coagulant dose prediction and has been in production at the 
Riverland contract from mid-2019. The solution uses a 
machine learning algorithm and historical decision tracking 
to create an ensemble model for each of the 10 WTPs, 
providing high and low confidence predictions for alum dose 
automatically as water quality changes recommending a 
safe average prediction. The confidence band is displayed in 

purple, with the yellow trace representing the dose 
prediction and the green line representing operator setpoint 
selection (Figure 4 and 5). 

To understand in more detail the impact of providing these 
tools, the system was deployed in production in 2019. 
Performance was monitored over a twelve-month period for 
trends in operator behaviours, number of optimisation 
events, and convergence (if any) of operator dose selection 
with application predictions. 

Once deployed the ChemDose+ implementation was 
applied retrospectively to all 10 WTPs to identify areas 
where chemical dosing optimisation may be improved in 
future and to assess the potential for OPEX savings 
associated with more frequent and responsive setpoint 
change. 

 

 

 

 

Figure 4. ChemDose+ trend of coagulant dose prediction vs actual for alum. 

Figure 5 
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Management assessment and gamification 
To ensure the optimisation strategy was aligned with 
operations managers, detailed overviews of all operating 
plants are displayed for comparison and assessment. 
Providing clear performance analytics (Figure 5) allows team 
leaders and operations managers to benchmark 
performance in real-time. The process can then be 
‘gamified’ where operators can compare each other’s sites 
with the goal of operating the most performant and efficient 

plant. A relative offset indicator provides teams and 
operations managers current state performance (Figure 6).  

Sites that are out of step by a large percentage with 
predicted values are not required to change immediately. 
However, they are prompted to assess their current 
optimisation for potential improvement. To understand if this 
strategy would be effective, TRILITY analysed the number of 
optimisation changes undertaken during the period twelve 
months after ChemDose+ was deployed with the 
immediately preceding twelve-month period for comparison. 

 

 

Figure 5. A snapshot of a year of predictions showing how the ChemDose+ model leads behaviour as raw water quality improves. 

 

 

 

Figure 6. A snapshot from showing historical model offsets (predicted vs actual dose rates difference in mg/L). 

Dose setpoint and model divergence (Model lead behaviour) 

Optimisation lag to model prediction 

Avoidable overdose event ~4 months 
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Optimisation frequency by site 
The frequency of setpoint change saw significant change 
post implementation with an average 56% increase in 
operational changes to alum dose rates (Figure 7). This 
increase was consistent across all 10 WTPs. When viewed 
in the context of historical performance, optimisation was 
found to be increased with more minor water quality 

changes than previous periods, with shorter reaction times 
after raw water quality change (data not shown). Interviews 
with process support teams indicated rapid uptake was 
apparent for many operators who were using Chemdose+ to 
augment dose optimisation activities between regular jar 
testing duties. 

 

 

 

Figure 7. Increase in alum dose rate changes by operational teams. 

 

AUTOMATED FILTER 
HEALTH MONITORING 
To offer confidence the ChemDose+ applications provide 
due benefits with no appreciable degradation in plant 
performance or water quality, the Filter+ application was 
utilised to assess calculated end-of-run turbidity 
performance, by capturing and aggregating the last known 
turbidity value prior to backwashing. This assessment 
provides confidence as the operations team utilise the 
predicted ChemDose+ setpoint more frequently, and 
ensures no aberrant performance or conditions are 

generated that would compromise operations or treated 
water quality. 

The second focus of the Filter+ application was to 
benchmark normalised clean bed head loss (NCBHL) for 
individual filters and normalised head loss accumulation rate 
(NHLAR). These indicators provide a rapid assessment of 
short and long-term filter asset performance and allow 
individual filters to be compared to each other independent 
of flow variation or size between WTPs. These assessments 
can be used to accurately inform asset and project teams of 
potentially underperforming assets and prioritise media top-
ups, cleaning, and inspection regimes. 
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Long-term filtration performance analysis can be a difficult 
task to analyse and interpret, even for the most experienced 
process engineer. Very large data sets can rapidly cripple 
local data management tools and require engineering teams 
to sort, analyse, validate, compare and infer performance 
inefficiently, requiring complete re-analysis when the next 
performance period is required. 

To remove the need for infrequent and manual calculation 
and assessment, and to align TRILITY operations to the 
current Water Service Association Australia (WSAA) ‘Good 
Practice Guide to the Management of Microbial Risk’ manual 
for its media filtration assets, the application was designed 
to automate multiple filtration KPIs for at-a-glance current 
state and long-term performance analysis. 

Normalised clean bed head loss (NCBHL) 
The normalised clean bed head loss metric is designed to 
monitor filter media state and is normalised for flow and 
surface area to a unit of mwg/(m2)/(kl/s) → mwg/(m/s) 
(meters water gauge/meters per second through the bed). 

This metric is dependent on the filter media characteristics 
(media size, porosity, media depth, media roundness etc.) 
and so provides an insight to the filtration asset state.  

A sudden reduction in clean bed head loss may infer: 

• Loss of filtration media due to incorrect backwash function 
• Improper flow distribution (reduced supply) between filters 
• DP cell calibration errors 

A sudden increase in a single filter clean bed head loss may 
infer: 

• Improper flow distribution (excess supply) between filters 
• Poor backwash efficiency (possible failure of backwash 

equipment) 
• DP cell calibration errors 

A slow increase in all filters clean bed head loss may infer: 

• Poor backwash efficiency (insufficient aeration, flow rates 
or times in wash states) under the current raw water 
quality conditions 

A slow reduction in clean bed head loss may infer: 

• Media recovery after excess solids loading event 
• Loss of filtration media through poor backwash control 

The clean bed head loss metric is specific to a filtration 
asset state and provides an early indicator of state changes 
which require review before media loss or mud balling 
events become unrecoverable. 

Normalised head loss accumulation rate  
The normalised head loss accumulation rate metric is 
designed to monitor the tendency of the feed water to foul 
the filter bed. The NHAR is normalised for flow, surface area 
and volume of water processed. 

This metric is dependent on the filter media characteristics 
(media size, porosity, media depth, media roundness etc.) 
and feed water solids loading. 

A sudden increase or decrease in a single filter normalised 
head loss accumulation rate may infer: 

• Improper flow distribution (excess or throttled supply) 
between filters 

• Improper floc distribution in the filter manifolds (direct 
filtration) 

• DP cell calibration errors 

An increase in all filters normalised head loss accumulation 
rate may infer: 

• Worsening of raw water quality 
• Degradation of upstream clarifier performance (Improper 

chemical dosing or hydraulic overloading) 

The normalised head loss accumulation rate metric is 
usually specific to a filtration asset’s feed water state, and 
provides an early indicator of state changes, which require 
review before treated water quality is affected and especially 
highlights ineffective coagulation control. 

OPEX assessment 
Ensemble models were generated and included in the 
ChemDose+ application to allow historical modelling of 
potential chemical savings by safely minimising dose rates. 
Predicted low values provide a safe operating context to 
minimise chemical dose during stable low risk periods.  
Predicted high values provide the facility to move towards 
enhanced coagulation practice for DOC removal, without the 
risk of unnecessary overdosing and process degradation. 
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RESULTS 
Variance between dosing predictions and 
operator setpoint selection 

Figure 8 shows the offset of predicted alum dose from the 
current setpoint selected by the operator, prior to 
deployment in 2019 (n=6908) and post deployment to the 
present (n=6918). Prior to deployment there is significant 

variance in dosing offset to the predicted optimal dose. After 
application deployment in June 2019, the data demonstrates 
a smoothing toward equilibrium with the model output 
(smaller offsets). This is to be expected when increased 
usage and willingness to accept the application predictions 
occur. A tightening of the variability and min/max offsets 
over the period also indicate increased use and reliance on 
the platform for process guidance. 

 

 

 

 

Figure 8. Flattening to model equilibrium of operator selected setpoint post ChemDose+ deployment. Circles represent possible 
outlier events (>1.5x interquartile range from the median) 
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ChemDose+ OPEX performance 
Ensemble modelling provides a confidence range to 
predicted values when using the ChemDose+ application. 
This provides users a safe minimum dose rate selection if 
operators seek to reduce the chemical costs of coagulants. 
Model fitting was retrospectively applied to all ten WTPs to 

gauge chemical reductions using the Predicted low 
parameter for alum dose rate over a seven-year period. The 
differential between the setpoint applied and this value was 
calculated to show potential reductions available for the 
period (table 1). 

 

 

 Table1: OPEX chemical savings potential for alum. 

WTP Average of operator selected 
setpoint 2012 -2019 (mg/L) 

Average of Chemdose+ 
Predicted low 2012 - 2019 % Alum Saving 

RMK 45.6 42.5 6.7% 

BMA 48.3 45.1 6.7% 

LOX 45.1 42.2 6.5% 

SWR 35.0 32.9 6.0% 

WKE 46.0 43.4 5.6% 

TBD 55.8 50.9 8.7% 

MBG 51.5 48.6 5.6% 

MNM 52.8 49.9 5.6% 

SMT 40.0 38.6 3.6% 

Average dose 46.7 43.8 6.1% 
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THM performance 2004 – 2020 
THM performance for the Riverland contract has steadily 
improved in relation to comparable water quality periods 
(Figure 9). Long-term trends show performance increase 
when comparing high organic loading periods (B,C) and 
stable low organic, low turbidity periods (A,D). 

When assessing percentage reductions between periods A 
and D, a large increase in overall THM production in treated 
waters was observed at both chlorinated (WKE, RMK, MNM, 
MBG, BRI, BMA) and chloraminated (TBD, SWR, SMT, 
LOX) sites. This indicated broad optimisation taking place 
over time with an average reduction of 46% between the 
periods (Figures 9 and 10), where n=18,708 samples. 

Figure 10 shows the broad mean reduction between periods 
A-D. High organic loads are often precursors to elevated 
THM formation potential, with removal through coagulation 

and sedimentation leading to improved THM performance. 
Between periods A – D, True colour removal @ 456nm 
increased an average of 7% (data not shown) with increased 
coagulation optimisation occurring in period D, leading to an 
overall reduction of THMs in treated water. Both chlorinated 
and chloraminated sites benefited from this improvement, 
indicating that lower formation potentials present for 
chloraminated sites can also benefit substantially from this 
optimisation (Figure 9 and 10).  

These gains are particularly impressive considering True 
colour in the raw water increased by more than 25% on 
average for period compared to A (data not shown), 
indicating greatly increased coagulation effectiveness when 
comparing the two periods.   

 

 

 

 

Figure 9. Seventeen-year THM performance evaluation for Riverland WTPs. 
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Maximum THM values for the two periods were reduced 
significantly, with Max THMs reduced by up to 84% at some 
sites, ensuring compliance well below the regulated 250ug/L 
in the Australian drinking water guidelines (ADWG, 2011).  

When assessing percentage reductions between periods A 
and D, a large increase in overall THM production in treated 

waters was observed at both chlorinated (WKE, RMK, MNM, 
MBG, BRI, BMA) and chloraminated (TBD, SWR, SMT, 
LOX) sites. This indicated broad optimisation taking place 
over time with an average reduction of 46% between the 
periods (Figure 11), where n=18,708 samples. 

 

 

 

Figure 10. Mean THM ug/L by period A -D. 

 

 

 

Figure 11. %THM reduction in treated waters during the millennium drought (A) when compared to the SE drought period (D). 
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NCBHL NHLAR performance 
A single plant (LOX) is discussed here in the context that no 
fundamental increases in water quality decay in treated 
water were observed over the two-year time period 
represented, contrary to what was seen in the filter 
performance at the other nine WTPs. Using this tool, water 
quality and process support teams were able to identify and 
co-ordinate with operations teams to prioritise filter media 
replacement and inspections at this location.  

NCBHL performance for LOX showed clear performance 
degradation for filter one with values >50% higher than the 
nearest filter (Figure 12), flagging this filter for assessment 
and maintenance inspections. 

Real-time, end-of-run turbidity showed no degradation in 
performance (data not shown) of filter one, indicating 
degrading filter performance may be an invisible process 
when standard water quality metrics are applied to 
benchmark their performance. Three additional filters across 
the 10 WTPs have been flagged for further media 
replacement prioritisation and enhanced inspections.  

 

 

 

Figure 12. LOX WTP real time NCBHL over a two-year period. 

 

DISCUSSION 
A major benefit of the change in behaviour observed when 
deploying these applications was the vast improvements in 
process visibility and optimisation practice at site level, 
without relying on engineering or process specialists to 
engage with site (particularly of notable benefit during 
COVID-19 restrictions). Deploying at scale provided a 
standard process and tool set, allowing multiple sites to 
achieve the same, clear performance benefits when utilising 
the two applications in conjunction. 

THM reductions observed were significant by implementing 
these changes and upgrades to current practice. Depending 
on the driver, these tools can be utilised to streamline 

performance increases in water quality OPEX or 
optimisation behaviours, depending on the focus of 
operational teams to meet new realities of remote work, 
regulated water quality, and value provided back to utilities 
end users. 

The large reduction in data manipulation and assessment 
often required by subject matter experts, engineers or site 
teams is not discussed in this paper, however, this intangible 
efficiency gain, frees expertise in water utilities to provide 
higher value services to operational teams.  

While optimisation goals are different for many utilities’, 
validation and confidence in predictive analytics is a 
common theme, this trust gap must be bridged if success is 
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to be achieved embedding AI and other next generation 
technologies. 

The deployed tools demonstrate that predictive models can 
be deployed at scale, made simple to use, and provide 
immediate benefits to treated water performance and 
efficiency. Performance goals can be automated and 
tracked, with measurable improvement even during complex 
operating conditions. In addition to the automated AI-
powered optimisation, the true success of any system 
requires the appropriate management of human factors. 
This may include adequate training of operations teams, and 
effective continuous improvement strategies, and clear 
explainable goals to users and stakeholders across the 
business.  
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