
  

 
1 

Operational Analytics: Complex 
Calculations, Simple Execution 
How to Prioritise Response Resources and Deploy 
Accompanying Action Plans  
 
 P Bonk, J Klaric 

 

ABSTRACT 
The water industry has entered an era where vast amounts 
of data are being produced from numerous sensors 
monitoring the network. This "Big Data" provides potential 
for far greater integration between operations, engineering 
and management.  

This data, if accessed, configured and analysed in real 
time will allow utilities, councils and supporting consulting 
companies create new operational insights in real time. 
Using this additional information with proactive system 
management can enable the discovery and solution of the 
complex challenges confronting the industry with a degree 
of execution and response that has previously been out  
of reach.  

The paper will discuss a step-by-step approach for 
operational analytics grounded in the discussion of 
successful case studies. 
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INTRODUCTION 
Data-Driven Decisions 
Numerous data sets from multiple sources provide 
potential for a higher degree of integration between 
operations, response teams, planning and management. 
Rapid growth in data collection is a progressive step for 
organisations however, the shortcoming to this success 
lies with the inability to articulate and interpret the data in 
real time for decision making purposes. By the time live 
datasets and small data analysis (spreadsheets, etc.) are 
manually combined and analysed, their value is greatly 
diminished. In the real world it’s the difference between a 
system alert providing early identification by the utility of an 

issue rather than relying on a customer or public complaint 
reporting a problem often well after the event has 
occurred.  

When staff from all segments of the utility can access live 
data, water, sewerage and drainage networks will in effect 
be monitored by many more staff whose different skill sets 
can be used by way of stored logic, sampled and derived 
data feeds, and templated and scalable calculations to 
greatly improve operations and system management. 

Design. Automate. Offload. Action 
Operational analytics is the process of continuing to 
improve business operations using information from data 
sets. In pursuit of proactive decision making, operational 
analytics allows for prioritisation of response resources & 
deployment of accompanying action plans. The operational 
analytics and artificial intelligence web based applications, 
Info360 & Emagin by Innovyze, to be discussed in this 
paper, contain workspaces designed to be utilised on a 
daily basis. These personalised workspaces include 
mapping real time or historical data from geospatially 
located sensors and alert mechanisms, visualisation of 
data through charts and built-in analytic displays, pre-
designed visuals and metrics to monitor sensor health and 
data quality. These provide deeper insights on the 
operations and performance of water, sewerage and 
drainage networks.  

Informing the Info360 workspaces, shown in Figure 1 for 
network insights & subsequent action, is a data modelling 
application which receives, in this example,  multiple 
categories of live data (automated meter reading/automatic 
meter infrastructure, SCADA, water quality, demand, flow, 
pressure, level, pump data & hydraulic model 
historical/predictive runs). As well as network information, 
individual customer consumption from digital meters can 
be included to calculate live zonal demands, for 
comparison against fundamental aspects of networks from 
reservoir levels, pump operation and source flows. 
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Figure 1: Info360 by Innovyze, workspaces showing multiple geospatially located assets & data tags built on a data 
modelling application which consumes multiple categories of live data (AMR/AMI, SCADA, water quality, demand, flow, 
pressure, level, pump data and hydraulic model historical/predictive runs) for water, sewerage and drainage network 
insights and subsequent action. 

 

The automated data modelling and analytics engine 
constantly samples across the available data record to 
create a “Time Series model” for each sensor to capture 
the properties and behaviour of the measured data stream. 
The application is source agnostic, designed for 
operational analytics to be a fundamental aspect of 
proactive decision making which provides an immediate 
response to a system event.  When action is necessary, 
operational analytics provides the newfound ability to 
decide where, when, why and how an operations, field and 
engineering team react and respond to system issues as 
they arise. 

 

Utilise Internal and External Expertise 
More data and dashboards are not enough for behavior 
change and adoption by users in their every day practices. 
The intent of this paper is to methodically demonstrate 
ways in which operational analytics are within every 
organisation's grasp utilising their existing skillsets, data 
sets, IT infrastructure and software tools. The paper will 

discuss a step by step approach for operational analytics 
grounded in the discussion of successful case studies. 

 

OVERVIEW OF SYSTEM 
BENEFITS 
An overview of the system benefits found thus far include: 
• Sensor health; reporting on data quality, total uptime and 

notification of stuck/failed sensors.   
• Demonstrated cost savings relative to baseline operations 

with return on investment realised within months.  
• Event detection and management; the early detection of 

system or component failures using simple analysis with 
basic statistical functions (variance equations) to more 
advanced analysis techniques (Fourier transforms). 

• Proactive identification of leaks and bursts; by applying 
industry best practice analysis metrics such as real loss 
metrics and Infrastructure Leakage Indexes (ILI).  
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• Active System Operation; detection of apparent losses 
such as unauthorised consumption, data transfer errors or 
data analysis errors can be discovered and addressed. 

• Better customer service; improving response time to 
bursts, pressure fluctuations and changes in dosing 
regimens. 

• Anomaly detection; simple statistics and/or pattern 
recognition can be built in to identify system anomalies. 
The application allows the user to build calculations to 
successfully access data and analyse it in either real-time 
or historically. 

• Increased reliability of data; templated approaches and 
methodologies can be created so that data is utilised for 
decision making as opposed to efforts solely directed on 
data cleansing. 

• Moving beyond solely human judgement, utilising artificial 
intelligence to make predictive recommendations to 
operations and management on complex operational 
decisions.  

 

Technology Drivers 
Overall, operational analytics are being driven by: 
• Organisations collecting large amounts of timeseries data 

yet often failing to realise the information contained within 
the collected data.  

• Increased collaboration and communication between 
operations, response teams, engineers, management and 
board level decision makers.  

• Cost savings from increased energy efficiency and 
effectiveness of daily system operations. 

• Automation and daylighting of routine calculations and 
analysis measures often managed “out of sight” by a 
single engineer.  

• Streamlining and standardising internal processes for 
teams with multiple stakeholders and needs.  

• Understanding how planned changes in the system will 
affect customers. 

• Identifying events that may be occurring in the system 
unnoticed. 

• Quantifying how the system can be operated more 
effectively.   

• Determining what impact each system is having on 
another. 

• Prioritising current and future data collection.  
• Improved resiliency of network ensuring key system 

constraints such as service reservoir volumes are 
maintained continuously over daily operational cycles.  

 

 

 

Overcome Organisational Siloing  
Often internal groups operate in isolation with their own 
data sets, shown figuratively as a ‘siloing effect’ in Figure 
2. Whether one works within operations, response teams, 
engineering, planning, management through to board level 
decision makers, workspaces can be created to visualise, 
calculate, and report network performance based on a 
stakeholder’s unique data needs, timelines and 
responsibilities. 

 

Figure 2: Stakeholders within an organisation 
experience separation based on lack of access to data 
and their respective unique data needs. 

Unique data needs of key members of a water authority 
can be accomodated within an operational analytics 
platform. This could include: 

Operators & Response Teams  
o Event detection and response  
o Understand loss of system integrity  
o Asset performance and live levels of service  
o Optimised controls  
o Updating operating manuals. 

Engineering  
o System design and behaviour  
o Event forecasting  
o Understanding demand  
o Leakage and non-revenue water 

Management  
o Non-revenue water  
o Developing key performance indicators  
o Collaboration amongst the team  
o Knowledge management  

Directors/Board Level  
o Risk management  
o Regulatory compliance  
o Cost/benefits analysis 
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METHODOLOGY - 
TECHNOLOGY 
DISCUSSION 
Source and Configure Real-Time Data 
Capture 
Smart meters, Automated Meter Reading and SCADA are 
utilised to acquire large amounts of data which provides 
consumption metrics (authorised and unauthorised) of 
water supplied, variability in pressures across multiple 
levels of zones, asset performance in real-time and over 
periods of time to name a few.   

As with all real-time data analytics, data streams must be 
assessed for quality, reliability, and suitability for 
appropriate metrics. As part of this, all SCADA managers, 
data analysts, and engineers will need to determine the 
availability of their data, frequency of data-dropouts, 
repeats or other systematic anomalies present in all real-
world data. Data availability and reliability issues are an 
intrinsic part of any ‘live’, real-world data collection system. 

With these inherent issues, Sensor Health, also known as 
a way of measuring data quality, can provide feedback and 
a better understanding of the data quality itself to ensure 
designers, operators and maintainers of SCADA systems 
may have this added level of confidence in the data they 
are collecting and providing for decision making processes 
within their organisations.  

Figure 3 provides a simple example of how a user could 
demonstrate the uptime and downtime of sensors in a 
network. The summary chart was created via the 
software’s built-in visualisation functionality and added to a 
user’s workspace.  

Dashlets are customisable visualisation tiles that utilise 
built-in and configurable calculations on the live and 
historical data. The dashlet shown in Figure 3 calculates 
the approximate amount of hours of downtime for a group 
of sensors. The calculation contained in this dashlet looks 
at each 30-minute block (over the past 31 days) for either 
no received signal or a constantly repeated signal and 
presents the number of half-hour blocks as a measure of 
downtime. 

 

 

 
Figure 3: A dashlet displaying a sortable summary list of sensor uptime for selected sensors within a network. 
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Dashlets, added by the user to their respective personal 
and or sharable workspaces, is a customisable and 
configurable view that can display network information in a 
range of formats such as charts, tables, mapping, alert 
summaries, scatter graphs, external website content, 
images, etc.   

Sortable lists provide users with better information to 
prioritise maintenance schedules, targeting the longest-
outage or most critical sensors first for repair or 
replacement. 

A high level of analysis is readily available to a first-time 
user. Built-in mathematical functions within each dashlet, 
such as those shown in Figure 4, can be applied to 
timeseries data to provide a broad range of information 
such 

as volume through a zone, rates of change over different 
periods, or even simply moving averages to smooth out 
spikes in the data. 

 

 
Figure 4: Configuration of dashlets allows users to add simple and/or complex mathematical expressions for deeper 
levels of analysis. 

 

Dashlets actively query the raw data stream at pre-set 
intervals (e.g. half-hour intervals) and sum the total 
number of intervals during which no data was received 
from individual sensors within a group.  

Dashlets, as shown in Figure 3, sort and display the data’s 
availability summations within a sortable table for ease of 
establishing the largest contribution to overall downtime 
within a SCADA system, and thus can help prioritise 
maintenance and replacement decisions.  
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Once the quality of the overall data has been established, 
it is then up to the user to decide on what data sources are 
to be used – for example, raw sensor data such as a flow 
or pressure sensor on a particular pipe, or derived data, 
such as net usage through a network or district metered 
area or averaged data from multiple sources to construct a 
pump efficiency curve.  

Beyond solely summary charts, dashlets can provide 
colourful and comprehensive images such as pie charts, 

shown in Figure 5, informing the total uptimes of all the 
flow sensors for a network over a given historical time 
period (day, week, month, year, etc.). Graphical 
representations of uptime provide a quick ‘eye-test’  
based on any unusual variability between chart segments 
relative to remaining sections of the pie-chart. Users  
would immediately be alerted of data quality issues over 
the preceding day or week prompting them to investigate 
the root cause before basing critical decisions on 
measured data. 

 

 

 
Figure 5: Pie chart dashlet of flow sensor total uptime for previous seven days. 

 

 

Being able to drill down into which particular sensors are 
contributing most to total uptime/downtime can be useful 
on a day-to-day operational perspective.  

Figure 6 shows a bar chart dashlet for a data drill down on 
a single sensor with daily uptime (X-axis is day of the 
month) on an hourly interval (Y-axis average daily uptime). 

For a greater overview of sensor performance and data 
quality beyond individual dashlets and single metrics, pre-
built and designed sensor health workspaces are available 
to users; accessible from the software’s home page, once 
logged in to the application. 
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Figure 6: Bar chart dashlet viewing a single sensor’s average daily uptime on an hourly interval (X-axis; day of the 
month, Y-axis; Average daily uptime – hourly interval). 

 
Figure 7: Sensor Health and Data Quality Workspaces pre-designed within the software and available to users on  
log-in brings to light gaps in live and historical data, up-time of sensors and informs the prioritization of maintenance 
schedules of sensors; all geospatially located, viewable on a workspace. 
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Figure 7 shows a screenshot of the information available to 
users upon login and connection to data sources.  

In short, a sensor health analysis quickly and effectively 
brings to light gaps in both live and historical data, uptime 
of sensors, informs prioritisation of maintenance schedules 
of sensors as well as assisting the identification of ‘where’ 
and ‘when’ for future data collection locations. 

Sensor health, the quality of an organisation’s data, is now 
available for the user to actually understand the quality and 
dependability of its decisions with a known degree of 
confidence.  

 

Identifying and Applying Key Performance 
Indicators (KPIs)  
Deploying key metrics and insights beyond engineering 
services involves an application with workspaces open, 
configurable and viewable by varying levels of analysis 
and technical expertise specific to the needs of the 
respective stakeholder – operators, engineers, field crews, 
management, and key decision makers. 

The operational analytics application allows the user to 
build complex calculations within built-in analytics tools. 
Scripting and SQL (Structured Query Language) skills are 
not required for the user to successfully access data in 
real-time and build workspaces based on their unique 
needs. 

Configurable calculations, or automated workflows, are 
essential for complex calculations that have traditionally 
been built within spreadsheets and remained unavailable 
to stakeholders beyond teams with highly technically 
oriented skillsets such as engineering services.  

Outlining a few of the examples of key configurable 
calculations and KPIs utilised within the application thus far 
include: 
• Sensor health; reporting on total uptime and notification of 

stuck sensors. 
• Sensor uptime; providing a sortable list of problematic 

sensors based on pre-defined criteria.  
• Sensor drift; identifying variations from normal system 

behaviour. 
• Sensitivity analysis; identifying false negatives and false 

positives, such as detecting a burst that did not occur (i.e. 
assuming a swimming pool being filled when a burst has 
occurred).  

• Burst detection and reporting; using anomalous flow 
detection against live/historical usage profiles, highest 
usage instances, against flushing occurrences, misplaced 
versus lost volumes. 

• Identifying closed valves; using anomalous pressure 
values to identify valves left in a closed position after 
maintenance  

• Pressure Reduction Valve (PRV) drift - % spread for 
measure of control.  

• Pump efficiency; calculations outputted and displayed with 
scatterplots to observe pump performance.  

• Identifying high/low pressures; via data enveloping.  
• District Metered Areas (DMAs) usage; display of usage 

verses time against all DMAs.  
• Boundary breach versus sensor issues.  
• Identifying data faults; highlighting data that is inadequate 

for network analysis.   
• Mass balances; using billing data to conduct mass 

balances.  
• Critical pressure point performance; comparison of Critical 

Point Pressure (CPP) to Decision Support System (DSS) 
to determine drift from normal system behaviour.  

• Targeting system losses; quantifying monthly trunk main 
losses. 

• Current Annual Real Losses (CARL); Unavoidable Annual 
Real Losses (UARL) and International Leakage Index (ILI) 
calculations for whole of network and DMAs. 
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Figure 8: American Water Works Association’s (AWWA) Water Balance for authorised consumption, sources of 
revenue water, non-revenue water and categorizes the various sources of water loss (Source: AWWA M36 Manual,  
4th Ed). 

 

Figure 8 shows the American Water Works Association’s 
water balance for authorised consumption, sources of 
revenue water and non-revenue water and categorises the 
various sources of water loss. Metrics such as 
Infrastructure Leakage Index (ILI) is an increasingly 
accepted method for water loss audits globally. ILI is 
calculated using Current Annual Real Losses (CARL) and 
Unavoidable Annual Real Losses (UARL), with both 
metrics being commonly used for water loss audit 
reporting.  

Demonstrating how the configurable calculations and 
automated workflows are represented within the 
operational analytics software, Figure 9 shows the 
workflow for CARL and Figure 10 progresses further 
through the respective workflow to demonstrate how UARL 
is represented within the software. Key water balance 
metrics, calculated and completed for one section of the 
network, may be templated, mimicked and scaled across 
to other pressure zones and DMAs and utilised at the level 
of whole of network, providing a streamlined and 
standardised approach to building and applying key 
network performance metrics.  
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Figure 9: Calculations such as Current Annual Loss (daily) embedded within the Operational Analytics data modelling 
tool (source for CARL calculation: C. Lenzi et al. Procedia Engineering 70 (2014) 1017-1026) for streamlined, 
standardised and daily trending for real-time and historical analysis. 

 

 
Figure 10: Progressing further through the calculation schematic, Unavoidable Annual Real Loss (daily) embedded 
within the Operational Analytics data modelling tool (source for UARL calculation: C. Lenzi et al. Procedia Engineering 
70 (2014) 1017-1026) for streamlined, standardised and daily trending for real-time and historical analysis. 
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Analysis for Operational Insights 
Individual workspaces are built to visualise, calculate, 
inform network operations and report network performance 
based on the unique needs across the organisation from 
operations, response teams, engineering, planning, 
management through to board level decision makers.  

Once key KPIs have been identified and applied, the 
quality of the operational insights will be directly related to 
the quality of the data itself. Relating results to data quality 
is paramount for actual insights.  

“We identified a sensor was down for 6 months, yet we’ve 
been relying on it for pressure values to make decisions on 
our networks.” (Large Council, Australia) 

With data quality analysis in place and the generation of 
key KPIs, metrics relating to leakage, water balance and 
loss, pipe breaks and storage once typically calculated on 
an annual or quarterly basis can now be calculated on a 
sub-daily basis; allowing for trending analysis of key 
metrics that have not been available without time 
consuming and labour-intensive efforts.  When analysing 
operational insights, the KPIs may now be applied on a 
sub-daily basis, to larger scale, whole of network analysis 
for event detection and system performance.  

Leakage performance may now be calculated for every 
hour of the day and each zone in the system. The sub-
daily data may now be plotted in real-time for insights into 
how water loss is being addressed and to further detect 
system anomalies that may indicate pipe breaks, water 
theft or malfunctioning valves.  

To progress operational insights, event management 
analysis may be applied to the individual sensors or at the 
DMA level. On an individual sensor, simple statistical 
functions such as variance or rate of change may be 
applied to detect anomalies and events at that specific 
location. Yet as analysis scales up to the higher network 
level such as a respective metered zone or to a given 
DMA, network anomalies are harder to discern and 
differentiate. At the zonal and DMA level, a network 
sensitivity analysis must be conducted and considered to 
account for the wide variety of occurrences in a system 
that regularly contribute to deviations from typical system 
behaviour. Key considerations include: 
• A pipe burst and a swimming pool filling can both be 

identified with a metric such as variance. How can one 
differentiate between regular occurrences and events 
requiring rapid triaging of operations and response crews? 

• A pressure value is drifting, a flow value spiked, or a tank 
level dropped, why and what does this mean?  

• What’s the sensitivity of the statistical functions applied to 
each event?  

• How do I determine a false/negative versus a 
false/positive?   

• How does one account for the trade-off between 
“detecting every occurrence” and “detecting essential 
events?” 

• How does one optimise while considering key system 
constraints such as service reservoir levels and volumes? 

Developing event detection analytics for large areas can 
seem complex at first thought, and certainly highly 
complicated mathematical and statistical models can be 
built, yet improved understanding of system behaviour can 
be achieved with simple analysis techniques.  

One relatively simple method for identifying very large 
anomalous usages is to determine a ‘high usage threshold’ 
for each hour of the day, and set alerts to detect when the 
usage within a particular hour exceeds such a threshold.  
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Figure 11: Scatterplot dashlet of DMA usage versus time for a 24-hour period used to identify large anomalous usages. 

 

Figure 11 shows a scatterplot of usage versus inflow for a 
given DMA averaged over a 24-hour period. 

The respective DMA 24-hour diurnal usage profile derived 
by plotting inflow against usage provided the standard 
system performance to apply additional statistical functions 
with the aim of extracting events of significance.  

Figure 12 shows a summary table where a statistical 
function, within the dashlet functionality of the software 
analysed where the 95th-percentile and two-standard 
deviations above the mean usage for each hour of the day 
was calculated for a particular DMA. Furthermore, the 
applied statistical function identified usages above set 
thresholds for longer than two consecutive hours for a 
deeper differentiation of classification as an ‘anomalous 
event’.  

Statistical analysis can incorporate rules to separate out 
anomalous events deserving the attention of operations 
and response teams. The usage during these anomalous 
events was subtracted from the average usage for the 
respective hours for the time spent above the thresholds 
and summed to give a list of approximate volumes lost 
during these ‘events’, shown in Figure 12.  

The list was then compared to known historical events that 
had occurred within the DMA over the last few years and 
the volumes generally agreed (sometimes even to within 
10% of the estimated volume of the known event) with 
actual system events such as a pipe burst incidents and 
routine pipe flushing occurrences. 

The usage pattern applied in this case was used to filter 
out the sensitivity of a given analysis in alerting potential 
false negatives and false positives.  

Figure 13 shows a dashlet with built-in metrics to detect 
and determine typical usage behaviour versus an actual 
event such as a burst for a given pressure zone.  

In short, progress can be achieved with a simple variance 
function for analysing anomalies across a single meter or 
increasing the complexity of analysis by applying Fourier 
transform functions and advanced statistical or data 
science techniques at the DMA level to separate out 
deviations in system behaviour. In relation to complexity of 
approach, a ‘spectrum of analysis’ can be applied for 
better system understanding. 
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Figure 12: Tabular dashlet showing a sorted summary from greatest cumulative volume lost for events beyond mean 
usage over a 24-hour period for a respective DMA. 

 

 

 

 
Figure 13: Dashlets with built-in metrics to detect and determine typical usage behaviour vs an actual event such as a 
burst for a given pressure zone. 
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A User Scenario: Utilising External Expertise 
A local Council has aspirations of gaining a deeper 
understanding of its network by completing an advanced 
event management analysis of its network utilising the 
latest data science and statistical methods available to the 
water industry.  

Lacking the internal expertise and experience to take on 
the complexity of advanced event management analysis, 
an external data science consulting company is sourced to 
collaborate with the local knowledge of Council’s 
engineering services team.  

Working alongside the consulting data scientists, Council 
engineers, utilising their intimate understanding of their 
respective network, provide their prior years flow and 
pressure data along with known locations of historical 
incidences. Collaborating with their in-depth knowledge of 
historical network operation practices, the engineering 
team work with the data scientists to  relate network asset 
locations to the timeseries data sets handed over to the 
consulting team. 

Statistical analysis metrics; successfully applied to create 
differentiation  between standard system behaviour, 
insignificant network anamolies  and events of 
consequence such as actual bursts are added to the third 
party operational analytics platform. The analytics platform 
enables data to be  made visually available and 
geospatially represented to Council’s engineering team via 
the application’s dashlet and mapping features within its 
respective web-based workspaces. The analysis 
developed by the consultants are handed over within 
templated workspaces, saved and applied to multiple live 
disparate data feeds for future event detection purposes. 
For scalability, the saved analysis is available to be 
replicated and applied to remaining sections of the 
respective network. 

Traditionally, data once available solely to Council’s 
engineering services has now been deployed with the 
latest event detection analysis techniques to operations 
with web-based workspaces viewable within their control 
centre for the application of pattern recognition on events 
as they happen, to field crews on their handheld tablets to 
geolocate an incident shortly after it happens. In parallel, 
the potential exists for network incidences to now be 
escalated to management for visualisation of event 
happenings and prioritisation of resourcing, with pre-
configured KPIs available for post event diagnosis and 
assessment. 

In pursuit of operational insights, whether through internal 
expertise or external consultants for supplementing 
engineering and data science capacity, the respective 
operational analytics platform allows for greater depth and 
detailed analysis to be applied, saved, standardised, 

reused (mimicked), streamlined and scaled across to other 
parts of the network.  

An application open to the industry and market forces 
ensures a continual pursuit of innovation and ability to 
integrate the latest data science and artificial intelligence 
techniques for system event management and leakage 
analysis.  

 

Insights Utilised for Action 
New insight and understanding becomes available once 
the vast array of data is accessed for action-oriented 
system management.  

From reactive to active system operation; asset 
management and leakage management programs, 
apparent losses such as unauthorised consumption, data 
transfer errors or data analysis errors can now be 
discovered, addressed and solved.  

Insights achieved from configurable calculations are now 
available in automated workflows beyond traditional 
spreadsheet methods and siloed engineering services 
team members expanding the system operations and 
performance insights to operations, SCADA managers, 
response teams and management observing KPIs on 
network performance. 

Automated workflows available to the business include:  
• Sensor health analysis brings to light gaps in live and 

historical data and uptime of sensors, informs prioritisation 
of maintenance schedules of sensors as well as the 
prioritisation of ‘where’ and ‘when’ for future data 
collection locations.  

• Calculations available once a year are now available on a 
daily or sub-daily basis such as Current Annual Real 
Losses (CARL), Unavoidable Annual Real Losses (UARL) 
and daily Infrastructure Leakage Index (ILI) for 
performance metrics on water losses across a network at 
various supply level fidelities.  

• Geospatially located trending analysis to relate measured 
system phenomena to known network events with 
notification of a system event for deployment of crews to 
the right place and prioritisation of available resources. 

• Provide reliable levels of service while balancing the costs 
of pump and tank operations.  

• Observe longer timescales where action over time is 
required i.e. “month on month, DMA pressure 
performance is getting worse.” 

• Pump health analysis – operate pumps in a uniform way 
to reduce deterioration.   

• Work towards differentiating the thousands of SCADA 
alarms generated on a yearly basis with the aim to avoid 
the significant false positives from being buried amongst 
the mass of alerts.  



  

 
15 

• Minimise the cost of operations; predictive pump 
scheduling utilising artificial intelligence to make predictive 
recommendations to operations and management on 
complex operational decisions.  

 

A User Scenario: Design, Automate, Offload, 
Action 
A utility renowned for its industry leading example of 
pursuing more intelligent water networks prides itself in its 
vast live data collection efforts. Internally, this prominent 
water enterprise has started to realise the growing amount 
of collected information does not necessarily lead to 
strategic and actionable decisions.  

Shifting its focus from data collection to event management 
analysis, the respective utility employs a small team of 
engineers to work with its resident data scientist internally 
to conduct a retroactive analysis of historical events that 
have occurred within their network.  

Extending the retroactive event detection analysis, the 
respective utility implements an operational analytics 
platform with geospatially located sensors, alert 
mechanisms and incident visualisation through built-in 
analytics dashlets to discern where, when, why and how 
an operations, field and engineering team interpret, react 
and respond to system issues in real-time as they arise. 

The retroactive analysis revealed a major event which 
occurred last autumn; a catastrophic pipe burst. The event 
occurred in the early evening and went unnoticed for 14 
hours eventually being detected by a ratepayer who 
contacted customer service and asked; “why is my street 
under water?”  

With a major burst going unnoticed an entire street 
became flooded over the course of the event. The said 
retroactive analysis by the engineering team revealed a 
final volume lost from the network of approximately 3.0 ML 
of water.  

Utilising a relatively simple statistics technique, the 
retroactive review picked up the burst in the first 2 hours 
which would have saved 80-90% of the burst volume water 
lost. Had operations been notified; preventative measures 
could have been taken to mitigate asset costs from the 
damages associated with flooding an entire residential 
street. 

With the operational analytics platform deployed in a live 
environment for future burst occurrences, the web-based 
workspaces with live network overviews and incident 
summaries within the software may now be used by 
operations, response teams and customer service to 
mitigate, prevent damages and reach out to customers 
prior to the immense frustrations that are felt due to 
damages to their neighborhood and homes.  

More data and dashboards do not always lead to more 
confident decisions. Actual meaning derived from available 
data will inform action from a live decision support tool. 
Workflows must design, automate and offload on behalf of 
the user for behaviour change and user adoption to occur. 

 

SUCCESS STORIES 
The outlined methodology was applied to the following 
successful case studies. 

Pipe Burst Detection & Tank Level Variability – 
Small Council, Northern New South Wales, 
Australia 
Data was provided from a small northern NSW Council for 
an early Saturday afternoon pipe burst in a residential area 
that went undetected by council staff for a period of 4 
hours until called in by the public. Data provided to 
Innovyze included 5 days of tank outflow data leading up 
to a historic burst, (residential zone supplied only from flow 
monitored tank). Figure 14 shows a set of the flow data 
provided for the historical analysis of the pipe burst 
detection study. 

Figure 14: Residential flow data provided for historical analysis on the pipe burst detection study. 
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Simply using a dollar per litre lost approach, $2,000 would 
have been saved as the alert detection reduced response 
times to 10 minutes.  

What was “seen” by operations? When Council forensically 
investigated the burst, operators recalled: 

• Tank level dramatically dropped; no SCADA alarm 
generated as it was within normal operating bands. 

• When tank level SCADA alarm was triggered, the cause 
was thought to be failure of the pump supplying the tank 
rather than a pipe burst in the zone supplied by the tank. 

 
 

 
Figure 15: Burst detection using changes in the variance of SCADA data received from sensors was an effective 
method of detecting status changes within a water distribution network, including the detection of both leaks and 
bursts even within a sampled data environment. 
 

Figure 15 shows the flow data provided with a derived time 
series (refer to Equation ‘1’ below) utilising the variance 
function for event detection. A brief review of the 5 days 
leading up to the burst with the variance timeseries shown 
in Figure 15 revealed that for normal system behaviour the 
variance did not exceed a value of 15.  

 

Whereas when utilising the same variance equation (Var, 
5) through to the pipe burst incident, the derived variance 
time series drastically spiked to a value upwards of 600 
indicating a burst had occurred.  

 

The following variance function defined in the equation 
below, where "μ" is the average of the dataset and xi the 
individual readings, was applied to a total 7 days of flow 
data with 5 days of flow patterning leading to the burst 
assumed to represent typical zone demand. 

 

 
 

Concepts demonstrated by this study include: 
• The Council had recently implemented SCADA but the 

data historian pulled data from SCADA on a daily 
schedule at midnight. This meant that all data analytics 
performed by the historian were useless to the control 
room operators. 

• Existing IT infrastructure and skillsets were used to build 
the search, track and scheduling mechanism that 
successfully detected the burst from a historic time series. 

• Built in queries and search functionality; therefore, 
scripting or SQL syntax skills were not required to analyse 
historical data and/or build alerts.  

• No specialist SCADA implementers required to setup 
alerts. 

• Timeseries data accessed by all (secure – read only 
access). 

 

Live Data Saves Money – Yorba Linda, 
California USA 
Yorba Linda Water District (YLWD) has 25,000 potable 
water connections, serving residents in the hilly terrain of 
Yorba Linda and parts of Placentia, Brea, Anaheim, and 
Orange County in California, USA. The District imports 
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about a third of its water, supplementing its groundwater 
supply. Yorba Linda is utilising operational analytics to 
monitor its water usage and asset efficiency. YLWD is 
starting the process of calculating non-revenue water 
(NRW) and leakage management calculations such as 
International Leakage Index (ILI), validating pump curves, 
monitoring tank levels and pump usage and continuously 
calibrating their hydraulic models with insights from both 
the engineers and operators.  

The initial operational analytics works at YLWD have 
resulted in improved maintenance of pump stations (a 
“lead” pump unexpectedly had much more wear and tear 
from higher usage and a discrepancy in performance) and 
clearer insights into tank levels and pump runtimes. 

 

“But this time, with this analytics application, we were able 
to bring in our operations team together with engineering 
staff for just two days. So, not only did it expedite the 
calibration effort, it also impressed our operators as they 
had direct input during the meetings. It wasn’t even a full 
eight hours – with their assistance, it was just part of the 
day.” (Anthony Manzano, Senior Project Manager, Yorba 
Linda Water District) 

 

Water Management System (WMS) 
Implementation – Large Council, South East 
Queensland, Australia 
The South East Queensland Council went to market for a 
real-time water monitoring solution and selected Innovyze 
to install and implement a Water Management System 
(WMS) for NRW & leakage management, event 
management and water network performance 
management for supply fidelities such as whole of network, 
pressure managed areas and demand metered areas.  

Web-based, real-time workspaces were built to daylight 
and extend existing works and practices and build initial 
workspaces for key performance indicators such as ILI.  

A key consideration and focus of this particular 
implementation was around burst reporting. Specific 
analysis was completed on anomalous flow detection 
against live/historical usage profiles, highest usage 
instances, against flushing occurrences, misplaced vs  
lost volumes while filtering out the sensitivity of a given 
analysis in alerting on potential false negatives and  
false positives.  

 

 

 

 
Figure 16: Large customer report differentiating significant demand events from the network such as tanker truck 
fillings, usage from industry, to an actual system incident such as a pipe burst. 
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Initial workspaces built for the implementation were to be 
mimicked and scaled across remaining sections of the 
network by Council engineers and consultants following 
the implementation. Figure 16 shows a large customer 
report differentiating significant demand events from the 
network such as tanker truck fillings, industrial use to an 
actual system incident such as a pipe burst. 

Workspaces built for the operations team, engineers and 
management as part of this implementation include: 
• Water balance metrics and quarterly usage reports.  
• Identifying data that was not to the standard required for 

adequate network analysis.   
• Using billing data to conduct mass balances with bulk 

provider.  
• Sensor uptime with a sortable list of problematic sensors 

based on pre-defined criteria.  
• Displaying problematic sensors from a pressure 

standpoint.  
• Current Annual Real Losses (CARL), Unavoidable Annual 

Real Losses and International Leakage Index (ILI) 
calculations for whole of network and DMAs. 

• Burst reporting: anomalous flow detection against 
live/historical usage profiles, highest usage instances, 
against flushing occurrences, misplaced versus lost 
volumes.  

• Pump efficiency calculations with scatterplots to observe 
pump performance.  

• Critical pressure, point performance, comparison of CPP 
to DSS.  

• Monthly trunk main losses. 

 

Application of Artificial Intelligence for Water 
and Wastewater Systems – United Utilities, 
United Kingdom 
Innovyze’s artificial intelligence platform and algorithms 
were applied at United Utilities, United Kingdom (Abdul 
Gaffoor 2019). Confronted with complex operational 
decisions dependent on human judgement and 
experience, United Utilities opted to deploy AI-driven real-
time optimisation selecting the Oldham District metered 
zone due to its remote-control capabilities and high degree 
of implementation at its sites.  

Background on the United Utilities Oldham District metered 
zone includes (Abdul Gaffoor 2019): 
• Oldham is the 5th most populous area in the Greater 

Manchester Region. 
• Supplies 55 MLD (or 20,000 ML annually). 
• Services 19 DMAs and 3 large industrial users. 
• 5 out of 10 pump stations remotely controlled. 

• 4 out of 10 service reservoirs monitored. 

The AI platform generated real-time pump schedules, 
minimising the cost of operations within United Utilities’ 
compliance and maintenance requirements. The 
technology demonstrated (Abdul Gaffoor 2019):  
• Machine learning was leveraged to predict expected 

demand and dynamically adapt operations with least cost 
trajectory.  

• Machine learning models are an ideal tool for predicting 
the future states of complex and dynamic systems for their 
ability to self-adapt and adjust to new patterns that 
emerge from ongoing network behaviour.  

After a 12-week program, summarised below in Table 1, 
Innovyze’s AI platform, in collaboration with United Utilities, 
demonstrated the following return on investment, 
outcomes and benefits (Abdul Gaffoor 2019): 
• Generated 22% cost savings (approximately 3 £/ML) 

relative to baseline operations, corresponding to a 
payback period of 5 months.  

• Improved resiliency of network by imposing terminal 
constraints on service reservoirs to ensure volumes were 
continuously maintained over daily operational cycles.  

• Enhanced visibility of network by providing staff with 
impact of operational decisions on key performance 
indicators.  

• Potential to save 4,000 staff hours in terms of alarm 
management and response time.  

• CO2 emission reduction equivalent of 300 homes. 
 
 

 
 

Table 1: Summary (minimum, maximum and average) 
of cost savings and investment return periods 
achieved after 12-week program between United 
Utilities (Oldham District DMA) and Innovyze’s AI 
platform (Abdul Gaffoor 2019) 
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CONCLUSION 
Smart meters, AMR, SCADA and other data collection 
processes are generating bigger, better results but the 
data generated is at present under-utilised. The "Big Data" 
era provides potential for far greater integration between 
operations, response teams, engineering systems, 
management and board level decision makers. In pursuit 
of proactive decision making, operational analytics allows 
for prioritisation of response resources and deployment of 
accompanying action plans often in real time. 

The operational analytics and artificial intelligence web-
based applications, Info360 and Emagin by Innovyze, 
discussed in this paper, contain workspaces designed to 
be utilised on a daily basis include mapping, geospatially 
located sensors and alert mechanisms, visualisation of 
data through charts and built-in analytics dashlets, pre-
designed visuals and metrics to monitor sensor health and 
data quality to provide deeper insights on the operations 
and performance of water and sewer networks.  

 

Overcome the Inertia of Existing Systems  
The approach of sourcing and configuring real-time data 
capture, identifying KPIs for application, running an 
analysis to create operational insights and utilising such 
insights for proactive system management will allow 
utilities, councils and supporting consulting companies to 
discover, address and solve the complex challenges 
confronting the industry with a higher degree of execution 
that has previously been elusive and out of reach for many 
to take on. 

 

Design, Automate, Offload and Action 
More data and dashboards do not always lead to more 
confident decisions. 

Insights achieved from configurable calculations are now 
available in automated workflows beyond traditional 
spreadsheet methods and siloed engineering services 
team members, expanding the system operations and 
performance insights to operations, SCADA managers, 
response teams and management observing KPIs on 
network performance. 

Actual meaning derived from available data will inform 
action from a trusted decision support tool. Workflows must 
design, automate, offload and action on behalf of the user 
for behaviour change and user adoption to occur. 

Moving beyond solely human judgement for action, 
artificial intelligence applied to operational analytics may 
now be utilised to make predictive recommendations to 

operations and management on complex operational 
decisions.  

 

Utilising Internal and External Expertise 
In pursuit of operational insights and directed action, 
whether through internal expertise or an external 
consultant for supplementing engineering and data science 
capacity, greater depth and detailed analysis may be 
applied, saved, standardised, reused (mimicked), 
streamlined and applied to other parts of water, sewerage 
and drainage networks with the use of the operational 
analytics and artificial intelligence software by Innovyze.  

Operational analytics, artificial intelligence and the 
accompanying spectrum of analysis techniques from 
simple statistical methods through to the application of 
machine learning algorithms may now be part of every 
utility and council’s digital journey.  

An application open to the industry and market forces 
ensures a continual pursuit of innovation and ability to 
integrate the latest data science and artificial intelligence 
methods available to the water industry. 
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