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INTRODUCTION 
The large cost of water pipe failures in potable water networks 
and the need to replace aged water pipes requires water 
utilities to develop risk-based management plans for the 
replacement of water mains. Cost benefit analysis requires 
the development of decision tools that can recommend a 
pipeline replacement program. The recommendations of the 
decision tools must be capable of being defended if 
challenged. An important feature of such a decision tool is a 
model to predict pipe failures to enable the estimation of the 
timing and costs of repairing, maintaining and replacing 
pipelines. Survival analysis provides a defensible mechanism 
for the prediction of pipe failures that can be included in a risk-
based asset management model. 

Survival analysis is a set of statistical methods used to 
determine survival times and study the influences on them. 
Survival time is the time until an event occurs. The event 
could be death, disease onset, customer churn, water main 
burst or any outcome of interest.  

This paper describes the use of survival analysis to develop 
four models of survival for a fictional 10,000 water pipe 
dataset using the statistics software program, R. There are 
many statistical packages available to perform survival 
analysis, but R has been chosen because it is available free 
of charge, is powerful and widely used in research.  

 

 

SURVIVAL ANALYSIS OF 
WATER PIPELINES 
Non Parametric Analysis – Kaplan Meier 
Survival Curve 
The most widely used non-parametric model of survival 
function is the Kaplan-Meier curve. Figure 1 shows the 
Kaplan-Meier curve for a fictional 10,000 pipe dataset. This 
empirically derived curve can be used to estimate the 
probability of a newly laid pipeline surviving until a certain age. 

 

Figure 1: Kaplan-Meier Survival Curve 
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The hazard rate for the pipes dataset is shown in Figure 2. 
The hazard rate refers to the instantaneous probability of 
failure of a water main. The hazard rate for water pipelines is 
increasing with age because older pipelines are more likely to 
fail than newer pipelines. The graph shows a probability of 
pipe failure of 0.03% at age 65 rising to 0.55% at age 134. 
The graph shows a noticeable sudden increase in hazard rate 
(i.e. pipe failure rate) after age 80. 

 

Figure 2: Hazard Rate (Probability of Failure per year) 

Parametric Models – Weibull Curve 
Non-parametric models such as Kaplan-Meier are suitable for 
survival analysis because of their flexibility, however a 
parametric model allows the use of standard likelihood theory 
for parameter estimation and inference.  

Various parametric models are used in survival analysis 
including exponential, Weibull and log normal, however the 
Weibull distribution with an increasing hazard rate has been 
found to be the preferred parametric model for pipeline failure 
because the hazard rate (probability of failure per year) 
increases over time.  

Figure 3 shows a Weibull curve fitted to the Kaplan-Meier 
survival curve for the pipe data. The graph also shows the 
cumulative hazard curve which is the complement of the 
survival curve. The hazard curve for the fitted data is shown in 
Figure 4. 

 

Figure 3: Weibull Curve fitted to Kaplan-Meier Survival 
Curve 

 

 

Figure 4: Hazard Rate Based on a Fitted Weibull Curve 

Cox Proportional Hazards Model 
A third model available is the semi-parametric Cox 
proportional hazards model which can determine if a covariate 
has a statistically significant impact on survival. The Cox 
proportional hazards model also provides an estimate of the 
ratio of hazard rates between covariates.  

A covariate is a characteristic of the pipe that has a 
statistically significant impact on survival rate.  
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Figure 5 shows the hazard rates from a Cox proportional 
hazards model showing the effect of pipe material. The graph 
shows the difference in hazard rate for each pipe material, 
with material Mat_E performing worse. 

 

Figure 5: Hazard Rate for a Cox Proportional Hazards 
Model Showing the Effect of Pipe Material 

 

 

 

For a Cox proportional hazards model to be valid, the 
proportional hazards assumption must be confirmed. As the 
name suggests the hazard rates determined by the Cox 
model must be proportional. Methods to confirm the validity of 
the Cox proportional hazards assumption are Schoenfeld 
residuals, visual inspection of Kaplan-Meier survival curves, or 
visual inspection of log cumulative hazard curves.  

Decision Tree 
Artificial intelligence algorithms such as decision trees and 
neural networks (deep learning) have been used for survival 
analysis. If the Cox proportional hazards assumption is not 
valid, or the Cox model is limited by low statistical power, or 
there are several predictors and a small sample size, then 
machine learning algorithms can be used for survival analysis. 
As research continues it can be expected that machine 
learning techniques will be utilised more in survival analysis. 

The R package ‘LTRCtrees’ has been used in this paper to 
provide an example of machine learning for survival analysis 
because it can model the left truncated, right censored data 
considered in the pipes dataset. The ‘LTRCtrees’ package 
produces a decision tree which splits the data into 
homogenous sub-groups based on the covariates of interest. 
Figure 6 shows the decision tree produced by the ‘LTRCtrees’ 
package for the pipes dataset. 

The decision tree produced can be used to predict the survival 
of pipelines. 

 

 

Figure 6: Decision Tree Produced by the ‘LTRCtrees’ Package 
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Pipe Dataset 
A water utility typically has an asset register that contains the 
records of the pipelines in the water network. In addition, a 
database is maintained that records pipe bursts within the 
network. The dataset required for survival analysis of water 
pipelines is a combination of these two databases that 
contains all the mains in the system (including mains that 
have been decommissioned) joined to bursts recorded for 
each pipe. 

The pipe dataset analysed for this report consists of 10,000 
fictional pipe segments. Table 1 shows example data for five 
pipe segments which are representative of the data used for 
this analysis. In this paper pipe burst, pipe break and pipe 
failure all refer to a failure of a pipeline due to the structural 
condition of the pipe. In this report each pipe segment is 
referred interchangeably as a pipe, pipeline or main. 

Each pipe segment has fields for pipe ID, episode, length of 
pipe segment (in metres), material, diameter (in mm) and 
status. The status field indicates if the pipe has failed (which is 
shown as a 1) or not failed (status of 0 – currently in service or 
it was retired before failure). The pipe material is referred to as 
Mat_A, Mat_B, etc. because this is a fictional database.  

The burst year is recorded for each pipe segment that has 
failed. Pipe segments that have failed multiple times have a 
record for each burst. The episode number and pipe ID 
uniquely identify the record for each pipe segment.  

It is usual to analyse multiple bursts for an individual pipe 
segment; however, consideration may be given to only 
analysing the first burst of each pipe. If a pipe is in very poor 
condition and repeatedly fails, this could increase the hazard 
rate for all pipes and lead to premature replacement. 

Consideration should also be given to whether 
decommissioned mains that had many multiple breaks should 
be included in the analysis. Multiple breaks for poorly 
performing mains could bias the analysis and falsely indicate 
a higher hazard rate than if a poorly performing main is 
removed from the analysis. 

Each pipe has a start age referring to the age of the pipe at 
the start of the record, which is either the age of construction, 
or the age of left truncation or left censoring. The stop age 
refers to the age of the pipe at the end of the record, either the 
age of failure or the age of right censoring or right truncation.  

The start-stop format of Table 1 is called the counting process 
format which is useful for more complicated analysis such as 
recurrent events and time dependent variables. The data in 
Table 1 is recurrent data because one pipe segment can have 
multiple bursts. An example of a time dependent variable 
would be pressure for a pipe that was originally part of a high-
pressure zone, and then became part of a lower pressure 
zone.  

Censoring occurs when we know the event has or will occur, 
but we don’t know when. Records of pipes that have not failed 
by the date of observation or have been removed from service 
with no record of failure are considered right censored. Right 
censored records have a status value of 0. 

Truncation refers to an absence of records of events, i.e. we 
don’t know if an event has occurred. The records for pipes 
constructed before burst data was collected are defined as 
truncated, and the start age of the pipe is taken to be the age 
of the pipe when the burst records start.  

The pipes dataset used in this paper consists of 10,063 
records for 10,000 pipe segments because there were 63 
bursts recorded. 

 

Table 1: Example Data  

ID Episode Length 
(m) 

Status* 
 

Material Diameter 
(mm) 

Year 
Constructed 

Burst 
Year 

Year 
Retired 

Start 
(years) 

Stop 
(years) 

1 1 104 0 Mat_B 80 1876 - - 83 142 
836 1 134 1 Mat_B 80 1902 1994 - 57 92 
836 2 134 1 Mat_B 80 1902 2002 - 92 100 
836 3 134 0 Mat_B 80 1902 - - 100 116 

1931 1 178 0 Mat_D 410 1951 - 2004 8 53 
6501 1 3 1 Mat_A 150 1964 2003 - 0 39 
6501 2 3 0 Mat_A 150 1964 - - 39 54 
8691 2 6 0 Mat_E 150 1995 - - 0 23 

*(0 = not failed, 1 = failed) 
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Other covariates that may be of interest that are not shown 
here include average system pressure, pressure during the 
burst, system pressure range, water supply zone, weather, 
cause of burst, type of burst, failure type, break location, 
ground condition, water temperature, corrosion protection, 
date and time of burst, land use, and depth of pipe.  

Collection of this data is time consuming and some data may 
not be available for existing burst records (e.g. weather, 
pressure), however for future bursts it may be possible to 
collect this information automatically. It is expected that 
pressure will have a significant impact on pipeline survival 
rate.  

Cause of Bursts 
Ensuring the accuracy of the burst record is essential for 
survival analysis. Accuracy refers not just to getting the facts 
right, but also to ensuring whether the burst was caused by 
the general pipe condition or operating environment and not 
due to an unrelated factor. 

Pipe bursts that are really a connection failure, joint failure, 
fitting failure or accident do not represent a failure of the pipe 
due to its inherent condition and should be excluded from the 
analysis. This will allow the survival analysis to provide the 
best estimate of pipeline failure. 

Failure of fittings, joints or connections should also be 
recorded, but analysed separately. If the connections on a 
main are failing it may be more cost effective to replace the 
connections on the main than replace the entire main. 
Similarly, if the lead joints on an old cast iron main are leaking, 
it may be more cost effective to repair the joints than replace 
the entire pipeline. 

Variation in Pipe Length 
For survival analysis it would be ideal for the length of each 
pipe segment to be the same because a long pipeline is more 
likely to burst than a short pipeline (for the same failure 
probability). However, the reality is that asset registers have 
pipes of varying length. Survival analysis can take account of 
this by including length as a covariate in the Cox proportional 
hazards model and determining the effect of length on survival 
rate.  

If the Cox proportional hazards model shows length to be 
statistically significant to survival rate, then length can be 
included in the Cox model, or shorter pipes can be analysed 
separately to longer pipes. 

 

SURVIVAL ANALYSIS AS 
PART OF AN ASSET 
MANAGEMENT PROGRAM 
Development of a Pipeline Replacement 
Program 
The design life of a pipeline refers to a general estimate of the 
expected life of the main and is generally assumed to be 50-
80 years. 

The useful life of a pipeline is a realistic estimate of the time 
that a pipeline can meet standards of service.  

The useful life could be defined as the age at which the pipe’s 
probability of failure (i.e. the hazard rate determined by 
survival analysis) reaches a predetermined value. The varying 
hazard rates shown in Figure 5 indicate that the useful life will 
be different for each pipe material – as expected.  

The replacement date for a pipeline can be estimated by 
adding the useful life to the date of construction. When the 
replacement date for each pipe is determined these can be 
compiled in a pipeline replacement program. For the pipes 
dataset used in this report, the pipeline replacement program 
showing the estimated length of pipe to be replaced by year is 
shown in Figure 7 for a 0.05% probability of pipeline failure.   

Potential uses of the pipeline replacement program within an 
asset management program are as follows:  

a. Set or review service levels. The adopted probability of 
pipeline failure directly determines the useful life. The 
impact on the pipeline replacement program (and hence 
future expenditure) can be determined for different service 
standards (i.e. pipeline failure probabilities) and the 
service level set accordingly. 

b. Allow planning for asset or non-asset solutions. By 
knowing the timing and cost of main replacements, a utility 
may be able to develop non-asset solutions, or 
alternatively identify that no non-asset solution is 
available. 

c. Renew or dispose of assets. The pipeline replacement 
program provides a forecast replacement year for each 
pipe. Standard construction cost estimates can be used to 
prepare an estimate of pipeline replacement cost for each 
year based on the pipeline replacement program. This 
allows the utility to ensure it has the appropriate resources 
to replace the pipelines as required. 
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The major feature of Figure 7 is the large number of forecast 
replacements between 2063 and 2093. The average length of 
annual main replacement between 2019 and 2063 is 
1,990m/year, and between 2063 and 2093 is 9,201m/yr.  The 

year 2063 may be a long time off but young engineers today 
may be in senior positions in 2063 when this becomes an 
issue. Planning for the large increase in annual pipeline 
replacement will need to be undertaken well before 2063. 

 

 

Figure 7:  Estimate of Annual Pipeline Replacement based on replacing mains when the probabilty of failure exceeds 0.05% 

 
Cost Benefit Analysis  
Survival analysis can assist the cost benefit analysis by 
providing a realistic estimate of the probability of pipeline 
failure. The probability of failure can be multiplied by the cost 
of pipeline repair plus the quantifiable economic cost of 
damage caused by the burst (e.g. damage to property, etc.) to 
provide an estimate of the economic cost of pipeline failure. 

The expected economic cost of pipeline failure can be 
compared against the economic cost of pipeline replacement 
or rehabilitation to determine whether it is cost effective to 
replace a pipeline. 

A risk matrix can be used to analyse non-economic costs to 
qualitatively compare the consequences of failure against the 
probability of failure. The risk matrix usually has the probability 
of an event on one axis and the consequence of an event on 
the second axis, and the risk being determined by the 
intersection of the two. 

Survival analysis can inform the risk analysis by providing a 
defensible estimate of the probability of pipeline failure. 

Unacceptable risks determined by the risk analysis must be 
mitigated by the project.  

An important consideration in a cost benefit analysis is to look 
at actual burst records for the main being replaced. Survival 
analysis may indicate the main is part of a cohort of mains 
due to be replaced, but the replacement candidate may have 
no history of failures, and therefore deferral of pipe 
replacement may be justified. 

For large diameter trunk mains that are very costly to replace, 
if the hazard rate for all trunk mains in a cohort indicates the 
pipe has reached its useful life, but an individual pipeline has 
better performance than other members of its cohort, deferral 
of main replacement may be justified for the better performing 
candidate. 
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For small diameter mains of a particular cohort, if the survival 
analysis indicates a high probability of failure (e.g. 100mm 
diameter AC mains older than 80 years), a utility may prefer to 
replace the entire cohort of these mains, rather than wait for 
each individual main to fail before replacement.  

The utility will need to balance the desire to replace mains 
before they burst – and avoid the costs of pipeline bursts – 
against the cost of replacing mains that may not fail for some 
time. This decision will be a function of available resources 
and organisational priorities as well as survival analysis and 
cost benefit analysis. 

Identify high risk areas 
Analysis of bursts may show that a group of pipelines has a 
higher failure rate than predicted by the survival model. This 
could be because of construction techniques, pipe material, 
operating philosophy or other cause. Note, for this to be 
identified the appropriate covariates need to be included in the 
Cox proportional hazards model or decision tree model. 

By investigating the reasons for variation in the probability of 
pipeline failure determined by the survival analysis, changes 
to operating or maintenance procedures may be identified that 
could improve pipeline survival. Examples of this could be 
lowering pressure, having a more stable pressure regime or 
the use of different pipe material. 

 

Conclusion 
Survival analysis can provide an estimate of the failure 
probability of water pipes based on burst history that can be 
used in asset management to provide a defensible 
mechanism to predict pipeline failure. The estimate of pipeline 
failure can be used to: 

• Develop pipeline replacement programs, 
• Determine the useful life of a pipeline, 
• Inform a cost benefit analysis, 
• Identify areas where the risk of pipe failure is higher, and  
• Suggest effective methods to extend pipe life. 
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