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ABSTRACT 
Data61 and Western Water worked collaboratively to apply 
engineering expertise and machine learning tools to find a 
cost-effective solution to the pipe failure problem in the 
region west of Melbourne, where on average 400 water 
main failures occur per year. To achieve this objective, we 
constructed a detailed picture and understanding of the 
behaviour of the water pipe network by 1) discovering the 
underlying drivers of water main breaks, and 2) developing a 
machine learning system to assess and predict the failure 
likelihood of water main breaking using historical failure 
records, descriptors of pipes, and other environmental 
factors. The ensuing results open an avenue for Western 
Water to identify the priority of pipe renewals. 

Keywords: Advanced assets management, Machine 
Learning, Data mining, Multi-factor analysis, Data61, 
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CHALLENGES AND 
HIGHLIGHTS OF THE 
WORK 
• While there is significant existing literature on pipeline 

failure causes, discovery of major failure factors was 
critical to discern which of these causes were the most 
important for Western Water; 

• Thus, an in-depth analysis was carried out to identify 
underline pipe failure factors by data pre-processing 
through a sequence of steps; 

• A machine learning prediction model was developed to 
identify future pipe failure likelihoods for every water main 
asset. These predictions were validated by separating the 
data into training and testing samples. Based on the 
prediction model, a derived list was generated and 
evaluated on the testing data; 

• Some divergent trends were observed in the Western 
Water records (e.g. failure rate for AC pipes decreases 
with the age). Therefore, data mining techniques were 
used to explore the intricate interplay between age and 
other factors to reflect the true trend, and; 

• Finally, a long-term forecasting model was developed for 
predicting which pipe assets are most likely to have a 
water main failure within the next twenty years. 
Furthermore, burst and fitting failures were considered 
separately; 

• A user-friendly, end-to-end runnable tool was developed 
for the prediction. 
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INTRODUCTION 
The consequences of water pipeline failures can be 
extremely severe in-terms of water supply disruption, high 
repair cost and compensation claims. However, prediction of 
the water main breaks is not an easy task due to their low 
failure rate and high cost of inspection, which have led to 
sparse historical data. 

 

Figure 1: Water main network of Western Water with 
burst failure rates in each region. 

 

Data scientists at Data61 and engineering experts in 
Western Water commenced model development to answer 
these questions and ultimately produced more targeted 
break mitigation and asset renewal programs for Western 
Water. Western Water is one of Victoria’s thirteen regional 
urban water corporations servicing 69,371 properties over 
an area of 3,000 square kilometres and a population of 
160,339. 

Mitigation of the water main breakage and water asset 
renewal programs should balance the consequence of water 
main failure and the cost to customers. To effectively 
achieve these dual objectives, it is important to know: what 
are the causes of pipeline failure, what is the probability of a 

failure for an individual pipeline asset and the risk of these 
failures associated with the business? 

Therefore, our main aim in this paper is to construct a 
detailed picture of factors affecting pipe failure rate to predict 
the future pipe breakage likelihoods. These likelihoods will 
be used to calculate the risk distribution by combining with 
asset consequence factor data (Risk = Likelihood x 
Consequence) to develop a risk-based investment decision 
framework for capital interventions. 

Although the factors affecting pipe failures have been 
studied before, understanding of these factors is to a large 
extent incomplete due to their high complexity. Thus, 
comprehensive analyses were performed to identify the 
factors that lead to failures of water pipes. This involved 
exploring statistically significant correlation between water 
main breaks and operational factors sourced from Western 
Water’s internal databases as well as external datasets such 
as the Bureaus of Statistics and Meteorology. In addition, a 
machine learning-based data analytic model was developed 
to predict the likely probabilities of future pipe failures. Data 
mining techniques were used to explore the intricate 
interplay between age and other factors to reflect the true 
trend of failure rate over time. Finally, the probability of 
failure for an individual pipeline was calculated by 
extrapolating past performance of similar assets in similar 
operational conditions elsewhere in the network. An annual 
failure probability value was calculated for all water main 
assets until 2037. 

The results were validated by comparing the number and 
location (suburb) of breaks projected by the modelling with 
actual performance in calendar year 2017. Validation was 
also carried out at the asset level by comparing assets with 
high failure probability against the asset renewal program. 
Further to this, end-to-end data analytic process is 
automated within Docker engine for the end user’s 
convenience. 
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EXISTING METHODS 
Analysis of water pipe breakage and forecasting future 
failure rates has been studied over the past few decades 
using a variety of methods and frameworks. 

Uri et al. (1979) developed a forecasting technique to study 
how the number of breaks would change with time if the 
pipes were not replaced. In that study, authors used a 
Poisson model based on the age of the pipes. Moreover, 
prediction of water main breaks has been studied using 
survival-based methods, such as Poisson regression by 
Asnaashari et al. (2009), and Weibull model. 

Most recently, tree-based machine learning techniques have 
been used to analyse water pipe breakages in Syracuse, 
USA by Avishek et al. (2017) and in Queensland, Australia 
by Liang et al. (2017). 

Although there is significant existing literature, there still 
exist open questions regarding the intricate relationship 
among the major factors causing pipe failure, and their long-
term effect on the lifetime of a pipe. Thus, discovery of major 
failure factors is critical to discern which of these factors are 
the most important for different water utilities. 

 

Figure 2: Schematic for Data 61 data analytic model for 
failure prediction. 

 

 
 

DATA ANALYTIC MODEL 
FOR FAILURE PREDICTION 
The framework of the proposed model is depicted in Figure 
2. The first step entails pre-processing pipe attribute data, 
and pipe failure data obtained from the Western Water’s 
internal database. In the next step, the influential and 
significant factors are investigated, and a water main failure 
prediction model is developed using a machine learning 
model (Random Forest Regression). Then the performance 
of the model is evaluated. Finally, a long-term failure 
forecasting model is developed, with an end-to-end 
runnable tool to automate the entire prediction process. The 
following subsections discuss the processes. 

 
Data pre-processing 
There are three main data sources used as the input to the 
analytical model: 

1. Network data describes water main information such as 
asset number, installation date, material, diameter, length, 
and location. 

2. Work order data describes water main failure information 
such as asset number, failure date, location, and failure 
type (burst, fitting). 

3. External data includes information in addition to assets, 
such as weather data from the Bureau of Meteorology and 
census data from the Australian Bureau of Statistics. 

The above data should be sufficiently accurate for the 
intended use, so a data quality review has been undertaken 
based on three key characteristics: completeness, 
validation, and consistency (examination for invalid values). 
The quality review demonstrates that the data is sufficient 
and accurate for further analysis. Accordingly, this process 
allows to establish a comprehensive data file with complete 
information for each asset that can be used as an important 
input to further analysis. 

Moreover, when information is gathered from multiple 
sources, and prior to adoption of advanced analytic 
techniques it is essential to match the failure records with 
the network data and identify gaps in the datasets. In 
addition, environmental and demographic factors need to be 
matched with the network data. Specifically, failure records 
and information are assigned to the corresponding assets 
based on the work order number, and environmental and 
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demographic information are assigned to the assets based 
on the geographic locations. 

 
Factor analysis 
Factor analysis has been used to identify pipeline failure 
drivers and compare their relative impact on the network 
based on the water network information. 

Factor analysis measures the correlation between asset 
performance based on the comprehensive data and a large 
range of factors (including environmental, demographic, 
asset specific factors). While there is significant existing 
literature on pipeline failure causes, this step is critical to 
discerning which of these causes would be the most 
important for Western Water. The asset performance is 
based on failure rate which is the number of asset failures 
per 100km per year. Both single factor analysis and multi-
factor analysis have been performed to identify the possible 
driving factors. The asset performance usually is not related 
to only one factor, so it is essential to measure the 
correlation based on multiple factors. Compared to the single 
factor analysis, multi-factor analysis is a factorial method 
devoted to study a group of individuals which is described by 
a set of factors. 

 

Figure 3: Pipe failure prediction model. 

 

 
 
 
 
 
 

Pipeline failure prediction 
This phase involves predicting future (short-term) water pipe 
failure probabilities. We framed this scenario as determining 
the likelihood of failure on each given pipe within the next 
immediate years. 

The model we developed includes specialised algorithms to 
handle the large amount of numerical calculations and data 
for prediction. The underlying statistical principle employed 
here is the Random Forest Regression, as trees are ideal 
candidates to capture complex interaction in the pipe data. 
This model is initially reported by Breiman (2001) and 
extended by Harvey et al. (2014). Random Forest 
Regression captures and extrapolates non-linear 
interactions among failure factors. 

The failure prediction is generated by training the machine 
learning model on historical failure records and other factors. 
Prediction accuracy is achieved by running many iterations 
of non-linear regression and then averaging the results. 
Finally, this trained model produces a failure probability 
score for each water main asset. This process is 
schematically illustrated in Figure 3. 

 
Long-term forecasting 

 

Figure 4: Failure rate of AC pipes with the increase of 
the pipe age. 

 

This phase extends the short-term prediction results to 
forecast pipe failures 20 years into the future. Here we 
assume that the function of failure rate with age is linear. 
Which means the failure rate will increase with constant 
value for each year. 
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Our approach on choosing the optimal coefficient, 𝑎∗ for the 
trend shown in Figure 4 is given below: 

1. Calculate the maximum and minimum values of 
the coefficients from single data point (𝐴𝑖, 𝐹𝑅𝑖), 
which are: 

 

2. Set the step-size as 𝜖.  For integers 𝑘 (𝑘: 𝑎𝑚𝑖𝑛 ≤ 
𝑎𝑚𝑖𝑛 + 𝑘 ⋅ 𝜖 ≤ 𝑎𝑚𝑎𝑥), obtain the sequence {𝐿𝑘} of sum 
of squared regression errors (loss), each of which 
is calculated as ∑𝑖(𝐹𝑅𝑖 − (𝑎𝑚𝑖𝑛 + 𝑘 ⋅ 𝜖) ⋅ 𝑡)2 

3. Select the smallest value of {𝐿𝑘}, return the 
corresponding 𝑎∗ as optimal. 

Where, 𝐴𝑖, 𝐹𝑅𝑖 are age and failure rate of each pipe, 𝑖. To 
obtain the data points shown in Figure 5, we must use a set 
of pipes (this is because individual pipe can only provide a 
small number of points with high variance). Here, the set of 
pipes can be a category. The category was initially fixed 
manually, e.g. all AC pipes. Thus, an optimum coefficient is 
calculated for each pipe type. 

 

RESULT ANALYSIS 
Data pre-processing 
First of all, a data pre-processing task was carried out to 
clean the raw data and match pipe attribute data with failure 
records. Data cleaning was conducted to make sure the 
data is complete and valid. 

 

Figure 5: Analysis for the completeness of water pipes. 

 

• Completeness: this is a statistic that does not allow 
empty values. For water pipes, all the records are 
complete, as shown in Figure 5. However, for failure 
incident records, 990 records have empty EVENT_DATE 
values, with 95% of completeness.  

• Validity: this is a statistic that does not allow invalid 
values. For water pipe data, 3432 records have invalid 
DATE_MADE values, making 98.5% validity (see Figure 
6). Failure data include 50 invalid records making it 99% 
valid for processing. 

 

 

Figure 6: Analysis for the validity of water pipes. 
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Figure 7 shows the data matching process, which matches 
the network data with work order data. Over 90% of data 
can be successfully matched. 

Table 1: Overall data matching process 

All Records 93.56% 

Bursts 93.53% 

Fitting Failures 93.57% 

 

Figure 7: Data matching: Process of matching failure 
records with pipe attributes. 

 

Ultimately, the data pre-processing including the quality 
review has demonstrated that the data is sufficient and 
accurate for further analysis. Using the processed data, 
overall failure rates for burst and fitting failures were 
calculated for each year from 2005 to 2016, as depicted in 
Figure 8. 

 

Figure 8: The failure rate of failure type for financial year 
2005-2016. 

 
Factor analysis outcomes 
Factor analysis allowed Western Water to compare the 
relative impact each factor has on causing failures. For 
example, within operational factors, AC mains were found to 
failure more often than others (See Figure 9). It was also 
found that water mains with laid year before 1985 exhibit 
higher failure rates. (See Figure 10). 

 

 

Figure 9: Failure rate of water mains based on materials. 
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Figure 10: Failure rate of water mains based on laid 
years. 

 

Figure 11: Failure rate of water mains based on monthly 
mean temperatures. 

 

Furthermore, environmental factors have been analysed, 
including weather data and soil data. The weather data is 
extracted from the Bureau of Meteorology. Monthly mean 
temperature data over ten years (2006-2015) was used for 
the analysis. The analysis results show that with the 
increase of temperature, overall failure rates increase (See 
Figure 11). 

 

Figure 12: Feature importance scores computed using 
the mutual entropy gain method. 

 

To quantify the amount of pipe failure information stored in 
each of the features in isolation, we calculate the mutual 
information between the pipe failure count and each feature. 
The resulting information scores for Western Water are 
presented in Figure 12. Pipe size (or diameter) shares the 
highest amount of mutual information with failures while pipe 
type has the least effect on failures. In general, all predictors 
by themselves display very low levels of mutual information 
indicating that by themselves, they do not predict failures 
sufficiently well. 

 

 

Figure 13: Validation of the prediction model based on 
historical data. E.g. For burst failure, model was trained 
from 2005-2012, 2005-2013, 2005-2014, 2005-2015 and 
tested on 2013, 2014, 2015, 2016 data. 
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Failure prediction outcomes (model validation) 
Pipe length based: Firstly, the prediction model was 
calibrated using the failure records from 2005 to 2015. The 
calibrated model was applied to predict the pipe failure 
probability for each pipe from year 2013 to 2016. The pipes 
were ranked according to the failure probability of each pipe. 
Using the ranked list, actual breaks from highest probability 
to lowest probability are accumulated (cumulative sum of 
breaks). The percentage of detected breaks is plotted 
against the percentage of inspected pipe lengths. Figure 13 
shows that if the first 10% pipes are inspected, more than 
30% of burst failures can be detected. 

Suburb based: Results were also validated based on 
suburb. Here, the suburbs were ranked according to the 
accumulated failure probability of each pipe in a suburb. 
Using the ranked list, actual breaks from highest probability to 
lowest probability are accumulated (cumulative sum of 
breaks). The percentage of detected breaks is plotted 
against the percentage of inspected suburbs. Figure 14 
shows that if the first 10 suburbs are inspected, more than 
70% of burst failures can be detected. 

 

 

Figure 14: Suburb level model validation for burst 
failures. 

 

 

Figure 15: Number of overlapping suburbs between 
model output and actual burst failure. 

 

Moreover, if the top 30 suburbs are inspected, 27 
overlapping suburbs can be found based on our model, as 
illustrated in Figure 15. 

 

Figure 16: Model output for top risking fitting failure 
zones for 2016. 
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Table 2: Top 10 risky suburbs for fitting failures 

2013 2014 2015 2016 

Bacchus Marsh Bacchus Marsh Bacchus Marsh Bacchus Marsh 

Sunbury Sunbury Sunbury Kurunjang 

Darley Melton Melton West Darley 

Melton Gisborne Woodend Melton West 

Brookfield Darley Kurunjang Woodend 

Woodend Brookfield Gisborne Melton 

Maddingley Wildwood Darley Sunbury 

Melton West Kurunjang Melton Maddingley 

Gisborne Woodend Brookfield Brookfield 

Kurunjang Melton West Diggers rest Gisborne 
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Suburbs are sorted by their normalised fitting failure 
probability in descending order. The top 10 risky suburbs 
from 2013-2016 have been listed in Table 2. The suburbs 
highlighted in green are overlapped with actual failure 
records. Hence, in each year, our model can successfully 
detect 9 out of top 10 risky suburbs accurately. 

Figure 16 shows the top 10 risky suburbs for fitting failure in 
2016. 

Long-term burst failure prediction for all water main assets is 
given in Figure 17. Note that the prediction is a probability 
distribution where darker areas represent high probability 
estimates and the lightly shaded upper and lower bounds 
represent low probability estimates. The uncertainty arises 
due to statistical significance of correlations from factor 
analysis. 

 

Figure 17: Projected water main fitting failure for the 
Western Water network over the next 15 years. Failure 
prediction is calculated as a probability distribution, 
darker shades of red represent a higher probability to 
occurrence. 

 

 

 

 

 

When we consider the entire spectrum of the years, failure 
rate increases with age (see Figure 4). In recognition of this 
pattern, the failure rate gradually rises over the years 
starting from 2017. Thus, the mean prediction or the 
trajectory most likely to occur is represented with a solid line 
in Figure 17 and Figure 18. Our model predicts that by 2030 
there will be an increase of 22%, 26% in the burst and fitting 
failures respectively. 

 

DISCUSSION 
The machine learning model developed in this project is 
based on the Random Forest Regression (RFR). We have 
also compared RFR with gradient boosting (GB) and few 
other machine learning techniques such as Neural Networks 
and Gaussian Process (GP). We have obtained highest 
accuracies with both RFR and GB. GP is computationally 
expensive than RFR. Therefore, we employed RFR to build 
the model. 

Significance of our approach: 
• Water mains in more than 40 suburbs in Victoria were 

studied 
• Data was pre-processed for application through sequence 

of steps 
• The factors were analysed for their impact to failures 
• Prediction model was developed and evaluated on 

historical data 
• Evaluation shows more than 20-40% failures can be 

detected by inspecting 10% of total pipe length 
• Some divergent trends were observed in the Western 

Water records such as failure rate for AC pipes decreases 
with age.  

• We used divide and conquer method by dividing the AC 
pipes into sub sets based on different features and 
analysing the trend 

• Failure likelihood of each pipe for next 20 years was 
predicted, and further analysed based on material and 
pipe size 

• Failure prediction tool was developed, which automates 
the process from data cleaning to long-term forecasting, 
as illustrated in Figure 19. 

Our model provides a projection of the likelihood of pipe 
failure. These likelihoods along with the consequence of 
failures are being used in Western Water’s current 
investment planning to make risk-based investment 
decisions for capital interventions. The severity of the 
consequence of failures is determined with the input from 
Western Water’s internal data. 
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Figure 19: Schematics for the end-to-end process automated within Docker engine for ease of use for the end users. User 
only needs to provide the input data files. System will go through several steps ranging from feature extraction, data 
cleaning, data matching, and pattern recognition to failure forecasting. The output files (ranked list based on likelihood of 
failure) will be saved in a separate folder. Burst, fitting and overall failures are considered as separate cases and three 
output files will be generated respectively. 

 

CONCLUSION 
This project has been developed to assist with forecasting 
and planning water main renewals with more confidence via 
predictive analytics. Pipeline maintenance and renewal 
programs balance level of service requirements and the 
need to minimise cost to customers. Therefore, we 
constructed a complete picture of factors causing pipe 
failures in Western Water’s water pipeline network and 
developed a prediction model to estimate the probabilities of 
water main breaks based on those factors. 

 

Figure 18: Projected water main fitting failure for the 
Western Water network over the next 15 years. Failure 
prediction is calculated as a probability distribution, 
darker shades of red represent a higher probability to 
occurrence.  
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Results demonstrate that our model is capable of providing 
valuable assistance to forecast and plan water main 
renewals with more confidence via predictive analytics. The 
next step is to apply a consequence rating to enhance the 
model predictions, as both of these factors are important to 
identify the priority of pipe renewals. Ultimately, we believe 
this work, at the intersection of machine learning and asset 
management, will lead to more effective and proactive 
infrastructure maintenance in the Australian water industry. 
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