
5 Reasons

Manual

Rewrites

Fail
A publication of

Did you know that 70% of software manual rewrites fail?

Of 3,555 projects from 2003 to 2012 that had labor costs of at least $10 million,

only 6.4% were successful. The Standish data showed that 52% of the large

projects were "challenged," meaning they were over budget, behind schedule or

didn't meet user expectations. The remaining 41.4% were failures -- they were

either abandoned or started anew from scratch.

Computerworld, Oct 21, 2013

INTRO

Poorly defined requirements.1

2

3

4

Cost overruns.

Software defects.

Unpredictable schedule.

5 Skill gap.

TOP 5 REASONS MANUAL REWRITES

FAIL:

Poorly Defined Requirements

IT projects often ignore strategy and stakeholders and

focus on budget and schedule. This often results in late or

ever-changing requirements. Every year thousands of

projects get derailed because of bad requirements.

What can you do to avoid this pitfall? Focus on the

strategic planning before the project. Establish a clear

view of the project’s strategic value to the business.

The plan MUST go beyond technical requirements.

Build a robust business case and maintain focus on

the business objectives.

Cost Overruns

Exceeding the budget is a major failure point for big

software rewrite projects. A recent study showed that of

1400+ projects surveyed, on average 27% were over

budget. Even worse, they had a cost overrun of over 200%

and were late by almost 70%. These were important

enterprise projects which could cause huge failures and

bring down companies.

What are the main causes of cost overruns? It all goes back to the planning

phase…. Again. When you’re thinking about large technology projects, you need to

thoroughly (and honestly) articulate your organization’s strategic business goals,

readiness, and stakeholder willingness to engage.

“Why Your IT Project May Be Riskier Than You Think”, HBR, Sept 2011

Software Defects

A project that has 100K lines of new code will have

between 2000-5000 bugs to find, fix, and test. Most of the

bugs won’t be discovered prior to project delivery. The later

a bug is discovered, the higher the cost. For a medium bug

fix (requiring 100 development hours), it takes seven times

the effort to fix versus getting it right the first time. That

means a defect costs $40K to fix in production vs $1,500

in development.*

How to avoid bugs? Software defects are a fact of life. However, the earlier you

identify and fix them, the more likely your project will succeed. Include business, IT

and development in one project team to ensure smooth planning and do testing in

early stages.

Cost of Rework Models for Agile and Non-Agile Projects, voke Research, July 11, 2012

Unpredictable Schedule

How do you build a reliable schedule? Start with smaller time frames and deliver

against frequent milestones. Shorter time frames result in an iterative process to

design, prototype, develop, test, and deploy small elements. Set clear and precise

objectives for each milestone. Small projects tend to be less complex and you’re

much more likely to deliver. Making the projects simpler is a worthwhile endeavor

because complexity causes confusion and increased cost.

*Standish Group, 2010

Software scheduling is notoriously unreliable. Over

one-third of software projects experienced time overruns of 200 to

300%. The average overrun is 222% of the original time estimate.

For large companies, the average is 230%; for medium companies,

the average is 202%; and for small companies, the average is

239%.*

Skill Gap

When a team lacks the knowledge and skills needed to do

the work properly, quality levels and productivity suffer and

the risk of serious errors or omissions rises fast. Skill

issues are consistently cited as a failure point for software

development projects and account for a significant portion

of the failure rate.*

If there is one ingredient that most effectively increases the

chance of project success, it is expertise.

*McKinsey-Oxford study on reference-class forecasting for IT projects

What Should You Do?

You have alternatives to manual rewrites. Automated

software code conversion gives you the best of both worlds,

costs 80% less money and is 4X faster. Code conversion via

automation tools enables you to reuse existing functionality

without starting over from scratch. Because you don’t have

to re-invent the wheel: Costs are lower. You need less time.

Your risk is lower. No new bugs are introduced and no re-

training is required because UI is the same (or similar).

The application can be re-factored and re-architected via automation tools to make

the new application multi-tier and cloud-enabled.

Better and better…

Once the code conversion is complete, you can enhance

the app with new features, updated UI and other

improvements. Why use automated code conversion?

Guaranteed success.

You get a full-functioning application that runs on the new

platform.

We’ve developed a calculator where you can calculate

your development costs. You can use real numbers

from your projects:

http://mobilize.net/solution/rewrite-calculator

http://mobilize.net/solution/rewrite-calculator

Need more help?

You can also use our assessment tool to help you figure out

costs: http://mobilize.net/modernization-assessment-tool/

Let a Mobilize.Net migration engineer help you figure out how

to convert your legacy application:

http://mobilize.net/talk-to-an-engineer/

http://mobilize.net/modernization-assessment-tool/
http://mobilize.net/talk-to-an-engineer/

